首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 46 毫秒
1.
研究柔性关节空间机器人轨迹跟踪及关节柔性振动主动抑制问题.导出综合电机特性的动力学模型,且基于奇异摄动理论将其分解为快、慢变子系统.针对快变子系统,采用速度差值反馈控制;针对慢变子系统,提出一种基于径向基神经网络的全阶滑模控制.其中径向基神经网络用于逼近系统未知非线性项,全阶滑模兼备结构简单、鲁棒性强等优点的同时,还能克服抖振问题.系统数值仿真结果证明了所提方案的有效性.  相似文献   

2.
针对空间机器人关节的快速跟踪控制问题,提出一种边界层厚度可变的两级滑模控制方法. 首先对研究对象建模,运用拉格朗日法推导出系统的动力学方程. 考虑其刚柔混合特性,结合奇异摄动理论,将系统分解为快、慢变两个子系统,对快变子系统设计了速度差值反馈控制方法,对慢变子系统设计了两级滑模控制方法,并引入边界层厚度可变的饱和函数来解决系统的振荡问题. 最后利用数值仿真进行了验证.  相似文献   

3.
研究了载体位置、姿态均不受控的自由漂浮柔性关节空间机器人机械臂轨迹跟踪及关节柔性振动主动抑制问题,利用系统动量、动量矩守恒关系及第二类Lagrange法,并综合考虑关节驱动电机特性,导出了其全系统动力学模型;然后基于奇异摄动理论将该动力学模型分解为描述机械臂刚性运动的慢变子系统及描述关节柔性振动的快变子系统,并结合关节电机输出力矩与电枢电流的关系,将对控制力矩的设计转化为对电流控制的设计。之后,针对关节柔性振动快变子系统,采用速度差值反馈控制方案对其进行了振动主动抑制;针对机械臂刚性运动慢变子系统,则基于RBF神经网络提出了一种全阶滑模控制方案;其中RBF神经网络用于逼近由系统不确定参数带来的未知非线性项,全阶滑模控制方案的引入在于使控制系统在兼备传统滑模控制方案鲁棒性强特点的同时,还能克服抖振问题。最后,系统数值仿真结果说明了所提方案的有效性。  相似文献   

4.
本文应用机电一体化的研究方法,推导了柔性机器人手臂的振动方程式,并结合控制系统,推导了机电系统的动态方程.对在任意位置上有集中质量的变截面桑性手臂进行了振动分析和数值仿真,并进行了实验验证.证明了本文的分析方法的妥当性和位置反馈的抑制技术是相当有效的.  相似文献   

5.
空间柔性双臂机器人的动力学建模及控制   总被引:2,自引:0,他引:2  
空间柔性多臂机器人是一个高度非线性、强耦合的复杂动力学系统。该文首先基于假设模态法、拉格朗日方程和系统动量守恒,推导了自由浮动空间柔性双臂机器人协调操作刚性负载闭链系统的动力学模型,并利用位置-力混合控制算法对该动力学模型实现了轨迹跟踪控制,最后进行了动力学控制仿真,验证了方法的有效性。  相似文献   

6.
利用多刚体系统动力学的方法对载体位置、姿态均不受控制的浮动基双臂空间机器人系统的运动学、动力学作了分析,并结合系统的动量守恒及动量矩守恒关系建立了系统的动力学方程.以此为基础,对双臂空间机器人关节追踪关节空间期望轨迹的控制问题作了研究.考虑到双臂空间机器人系统的结构复杂性及某些参数的变动性,根据具有较强鲁棒性的变结构滑模控制理论,设计了轨迹跟踪控制的变结构滑模控制方案.此控制方案的优点在于:在操作过程中不需要对双臂空间机器人载体的位置、姿态进行主动控制,因此将大大减少位置、姿态控制装置的燃料消耗.通过对该机器人系统的仿真计算,证实了文中提出的变结构滑模控制方案的有效性.  相似文献   

7.
针对3-PPSR并联机器人加入大长径比柔性铰链和与外界环境接触产生形变的问题,在控制端提出了基于位置阻抗控制的主动柔顺控制策略。该方法在柔性并联机器人与外界环境对象的等效作用模型和基于位置的阻抗控制模型基础上,引入外界环境作用力和结合系统的力跟踪模型,通过调整初始参考位置控制模型的稳态误差实现基于位置的外力跟踪控制。采用Lyapunov稳定模型和能量方程,在未知环境变量条件下通过力偏差直接控制目标位置的自适应控制系统实现自适应的力控制。实验结果表明,基于位置的外力控制精度可以达到±0.05N,应用自适应控制精度可以达到±0.1N,3-PPSR柔性并联机器人的末端的接触力控制精度得到了提高,满足设计要求,验证了该控制方法的准确性和有效性。  相似文献   

8.
李兴富 《科学技术与工程》2013,13(13):3626-3629
针对自由漂浮柔性双臂空间机器人,双臂的弹性变形采用假设模态法近似描述,高阶弹性振动模态忽略,采用拉格朗日方程结合系统动量守恒,建立闭链系统的动力学方程。采用分数阶控制方法分别控制目标位置和末端执行器内力。分数阶控制器与整数阶控制器对比,可以改善动态响应性能,提高抗干扰能力和增强鲁棒性。数值仿真结果表明这种方法的有效性。  相似文献   

9.
结合国内外现有的下肢康复产品及研究成果,研制了具有柔性关节的坐/卧式下肢康复机器人,采用摄像分析法进行步态分析,并对下肢康复机器人进行了动力学建模、分析及仿真.研究表明,下肢康复机器人对脑卒中患者的康复训练、脊髓损伤和截瘫、骨折患者的重新行走均能起到辅助作用,实现患者恒力恒速运动.   相似文献   

10.
针对一种刚柔结合的空间冗余度机器人,基于拉格朗日法、假设模态法和系统动量守恒对柔性连杆进行近似描述,忽略高阶弹性振动模态,借助Maple软件,推导了一种自由浮动空间柔性冗余机器人操作刚性负载的动力学模型,该方法提高了建模的正确性.并在此基础上,鉴于自由浮动空间机器人系统的结构复杂性和参数变动性,运用具有较强鲁棒性的滑模变结构控制对该动力学模型实现了轨迹跟踪控制,较好地抑制了柔性杆弹性振动,并减小了对本体的影响.最后进行了自由浮动三自由度柔性冗余度机器人的动力学控制仿真,仿真结果验证了上述控制方法的有效性.  相似文献   

11.
讨论了载体姿态、位置均不受控制的双臂空间机器人系统的控制问题.利用拉格朗日方法并结合系统动量守恒关系,建立了双臂空间机器人系统的非线性动力学模型.以此为基础,对双臂空间机器人关节运动的控制问题作了研究.考虑到空间机器人系统结构的复杂性及其某些参数的变动性,根据具有较强鲁棒性的滑模变结构控制理论,设计了双臂空间机器人关节运动的滑模变结构控制方案;为了克服滑模变结构控制器抖振的缺点,附加设计了一个模糊控制器,以便根据系统的输出来动态调节滑模变结构控制器等速趋近率的系数,从而既确保了系统的快速响应而又消除了原有的抖振.系统数值仿真证明了该控制方案良好的控制效果.  相似文献   

12.
讨论了载体位置与姿态均不受控制的自由浮动两杆空间机器人系统的控制问题 .系统动力学分析结果表明 ,结合系统动量守恒及动量矩守恒关系得到的系统动力学方程将为系统惯性参数的非线性函数 .借助于增广变量法 ,即通过适当扩展系统的输入与输出可以得到一组控制方程 ,它们可以表示为一组适当选择的惯性参数的线性函数 .在此基础上 ,对于机械手末端载荷参数不确定但误差范围可确定的情况 ,设计了关节空间轨迹跟踪的鲁棒变结构控制方案 .仿真运算 ,证实了方法的有效性 .  相似文献   

13.
利用拉格朗日方程建立了漂浮基双臂空间机器人系统的动力学方程,给出了载体位置、姿态均不受控制情况下,双臂空间机器人关节运动的非线性反馈控制规律.结果表明,在系统动力学模型及参数较精确确定情况下,本文提出的控制方案能够有效地控制双臂空间机器人系统完成关节空间的指定运动,而不需对其载体的位置、姿态进行主动控制.仿真计算结果证实了方法的有效性.  相似文献   

14.
空间机器人路径规划的姿态空间快速计算方法   总被引:1,自引:0,他引:1  
由于航天机器人工作环境的非确定性,这类机器人运动规划问题的关键是要求规划系统具有实时性,以便与传感信息相结合。基于姿态空间路径规划方法的核心问题是如何将位于机器人工作空间中的障碍物快速映射到姿态空间中。本文利用机器人基本工作面和基本碰撞体的概念来解决快速映射障碍物的问题。研究结果表明,该方法映射障碍物的时间为毫秒级,完全可以满足机器人在非确定环境中实时规划的要求。  相似文献   

15.
为提高工业机器人安全性,分析和研究了六轴关节式机器人Denavit-Hartenberg(D-H)模型,针对关节式机器人的安全问题提出了相应的保护策略.着重介绍了笛卡尔坐标系下虚拟安全空间的设置和表示方法,并提出了改进的碰撞测试算法.该方法以AABB包围盒方法为基础分离不可能碰撞物体,利用虚拟安全空间特点提出了在AABB方法不能判别区域进行狭义测试的方法,能够满足机器人安全空间检测的精度和快速性要求.最后介绍了应用该方法的安全控制器的设计与实现.  相似文献   

16.
探讨载体位置与姿态均不受控的漂浮基空间机器人在存在时间延迟环境下的关节空间轨迹跟踪的控制问题.在传统漂浮基空间机器人系统动力学模型基础上,融合泰勒级数展开法,建立适用于时延情况下的改进的动力学数学模型.并设计一种基于模糊递归的神经网络跟踪控制方案,利用其对任意不确定非线性项的整体逼近,来消除模型中存在的时延误差.运用Lyapunov第二类方法证明所设计控制系统的渐近稳定性.所提及的控制方案能够有效克服时延对系统稳定性的消极影响,并在提升系统控制品质的基础上得到理论延迟值的适用范围.计算机数值仿真结果验证了上述控制方案的有效性与精确性.  相似文献   

17.
从机器人的一个具体操作任务空间在其整个工作空间中的位姿最优问题出发,在对国内外学者提出的不同的机器人灵活性指标进行分析的基础上,提出一种在任务空间内评价机器人操作灵活性的方法,即以空间内平均灵活性指标和最差灵活性指标及二者之差联合评价机器人在任务空间内整体灵活性及指标的波动性,采用二者之乘积最大化为优化目标函数,确定了机器人操作任务所构成的任务空间相对于机器人本身的最佳位置.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号