首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 171 毫秒
1.
为了获得卷积神经网络特征图中不同特征点之间的长距离依赖关系,使卷积神经网络更好地区分前景目标和背景信息,提出了一种具有全局特征的空间注意力机制。通过通道融合层将多通道的原始特征图组合成单通道的特征融合图,消除了通道间信息分布对获取空间注意力权重的影响;将特征融合图经过全局特征获取处理,获得能够反映特征融合图中某特征点与特征融合图中所有点之间相关性的全局特征图;全局特征图与初始值为0的可学习变量相乘,并且在通道域复制自身,扩展为原始特征图大小,将扩展后的全局特征图与原始特征图对应元素相加,获得具有注意力机制的特征图。在不同卷积神经网络中加入具有全局特征的空间注意力机制进行实验,结果表明:在脑电波二分类任务中,所提注意力机制的分类准确率最高提升了0.839%;在CIFAR-10数据集多分类任务中,所提注意力机制的分类准确率最高提升了0.484%;在夜间车辆单类别检测中,在交并比阈值大于0.5的平均精度评判标准下,所提注意力机制最高提升了3.860%,在交并比阈值大于0.75的平均精度评判标准下,所提注意力机制最高提升了11.726%;在voc2007数据集多类别检测中,在交并比阈值大于0....  相似文献   

2.
针对低光照、雨雾等恶劣场景对智能驾驶视觉系统检测能力的影响,提出了一种雷达与相机特征融合的网络模型. 基于毫米波雷达信息和注意力模型构建了雷达注意力机制特征模块,该模块可以为特征融合网络提供一个先验信息和增加算法在目标候选区域权重. 测试结果表明,引入雷达注意力机制模块后,特征融合网络的目标检测性能要比仅依赖计算机视觉的检测性能有了明显的提升,并且在复杂场景下的目标检测鲁棒性更强.   相似文献   

3.
道路上的交通标志包含大量的交通规则语义信息,快速、准确地获取这些信息有助于实现更高级别的辅助驾驶功能,从而提高车辆的安全性能。针对交通标志易受外界因素影响、类别间相似度高和尺寸微小的难点,本研究基于YOLOv5s模型,在数据预处理、特征提取、特征增强方面分别进行了针对性的改进。在数据预处理部分,利用颜色空间变换、几何变换矩阵来模拟实际场景中交通标志可能发生的颜色变化和形状变化,通过Mosaic算法、Copy-paste算法来提高训练集中微小交通标志的数量和背景的丰富性。在特征提取部分,构建了基于通道注意力标定的C3-TCA模块来提高模型对相似特征的辨别能力。在特征增强部分,通过双路径增强结构融合浅层特征和深层特征,并优化了预测分支的数量和下采样倍率,从而增加了对微小交通标志的检测精度。此外,还利用K-means++算法聚类先验框模板,基于CIoU度量构建边界框回归损失函数,从而降低边界框的回归难度。在TT100K和CCTSDB数据集上进行测试,模型的mAP@0.5指标分别为88.8%和83.5%,模型的检测速度分别为120.5f/s和114.7f/s。相较于现有交通标志检测模型,所构建...  相似文献   

4.
现有深度学习目标检测算法往往只利用了卷积神经网络(convolutional neural network,CNN)提取的深层特征进行判别,对浅层特征利用不足。为了利用浅层的细节信息来提高最终所提取的特征层信息的丰富性,提出了一种基于区域生成网络(region proposal network,RPN)结构的多层特征融合目标检测算法,该算法通过深度卷积网络获取不同层次的特征,并将浅层特征与深层次特征进行融合来获得更加丰富的提取特征,以提升检测模型的性能。以Image Net上的公开数据voc2007为实验对象,以Faster RCNN为基础的检测框架进行改进,最终改进后的平均精度均值(mean average precision,mAP)相比于Faster RCNN有所提升,表明研究结果提升了目标检测模型的准确度。  相似文献   

5.
针对特征提取过程中缺乏对人群区域的针对性,不同大小人头目标不能同时检测以及特征融合时多尺度特征信息丢失问题,提出多尺度注意力模块,增强特征对高密度人群区域的关注。采用多尺度空洞卷积,结合提出的多通道特征融合模块,提取更完善的多尺度特征,提高对不同尺寸人头计数能力;利用密度图回归模块,融合多尺度特征,减少了多尺度信息的损耗。实验结果表明,本算法的计数结果更精确稳定。  相似文献   

6.
基于深度学习的方法,运用单次多框检测器(SSD)目标检测框架和自注意力机制,针对施工人员佩戴安全帽数据集进行神经网络训练.通过调整原始SSD目标检测框架中的参数,并向SSD目标检测框架中添加自注意力模块来计算特征图中像素点之间相互影响,以提高算法对目标检测的关注度,扩大卷积神经网络的感受野,从而提高目标检测的准确率.实验结果表明:改进算法在应对小目标检测以及目标之间的遮挡方面有很好的适应性,同时与其他检测算法相比,检测成功率有明显提高.  相似文献   

7.
针对SSD多尺度目标检测过程中存在的目标漏检和错检问题,提出了一种融入多维空洞卷积和多尺度特征融合的目标检测算法。在卷积神经网络输出的多尺度特征中,浅层具有更多的细节信息,深层具有更多的语义信息,根据这一特点,对浅层网络采用了3种多维空洞卷积的浅层特征增强模块,获得具有语义信息的特征图,将增强后的特征图进行下采样,融合不同层的特征;同时在深层网络引入通道注意力模块,对通道进行权重分配,抑制无用信息,提高目标的检测性能。研究结果表明:该算法在PASCAL VOC数据集上检测精度为79.7%,比SSD算法提高了2.4%;在KITTI数据集上检测精度为68.5%,比SSD算法提高了5.1%,检测速度达到了实时性的要求,有效地改善了目标的漏检和错检。  相似文献   

8.
提出一种基于注意力叠加与时序特征融合的目标检测方法.在端到端目标检测(DETR)网络的基础上,依据注意力机制特性,使用注意力权重叠加的方式提取目标物像素级标识,用于实例轨迹的划分.为使目标检测与轨迹跟踪协同作用,通过时序特征融合的方式融合之前轨迹跟踪信息,调整当前帧目标检测效果,从而充分利用视频载体提供的时间维度信息.在公开数据集上,对文中方法进行验证,结果表明:文中方法能有效识别被遮挡的目标物,具有较强鲁棒性.  相似文献   

9.
针对遥感图像中的小目标存在信息少、易受背景干扰、特征表达较弱等缺陷,导致目前通用目标检测算法在对这类小目标进行检测时效果不理想的问题,为提高对遥感图像中小目标的检测能力,提出一种基于RFBNet的改进算法.该算法以RFBNet为框架,首先利用自校正卷积取代特征提取网络中的常规卷积,以扩展感受野丰富输出,进而强化对弱特征...  相似文献   

10.
针对分组角点检测网络在目标检测过程中,由于目标尺寸过小或同类目标空间距离较小而导致检测失效的问题,提出一种边缘特征增强的CornerNet目标检测算法OEC。该算法通过分离特征的高低频信息提取更多的高频信息,增强目标的边缘轮廓特征,解决关键点定位不准确的问题,提高目标的框定效果,进一步提升检测精度。仿真结果表明,该算法对行人、车辆等目标检测效果均有提高,在COCO数据集上的检测结果与CornerNet相比,mAP提高0.9%,可应用于无人驾驶与智能机器人等场景。  相似文献   

11.
针对医学胸部CT扫描图像,在分别研究单一特征检索算法基础上,提出了基于底层—底层和底层—高层两种级别的特征融合检索方法。据此,用VC#和SQL server2005实现了一个图像检索原型系统,验证了所提方法的有效性。  相似文献   

12.
针对基于深度学习的图像检索提取特征往往包含了复杂的背景噪声,导致图像检索的精确率并不高的问题,提出一种特征图融合与显著性检测的方法.首先,训练用于分类的深度卷积神经网络模型.然后,并将图像卷积之后的特征图谱进行融合,得到图像的显著性区域.最后,通过计算图像显著性特征的余弦距离来进行检索.实验结果证明:相比目前主流的方法,文中方法能够有效提高检测精度,且鲁棒性较高.  相似文献   

13.
针对多目标跟踪算法在遮挡频繁的场景下存在目标关联准确性低的问题,提出一种结合检测与特征匹配的多目标跟踪算法. 该算法引入检测精度较高的YOLOv5作为多目标跟踪的检测器,能够精准定位目标,有效提高跟踪精度;在面对目标间遮挡时,通过专门设计特征匹配模型提取更为细致的特征,能够有效降低跟踪时目标ID的切换次数.在MOT16数据集上对跟踪性能进行评估,结果表明:所提方法可以有效缓解目标遮挡,实现稳定跟踪.  相似文献   

14.
针对显著性目标检测任务中识别结果边缘模糊的问题,提出了一种能够充分利用边缘信息增强边缘像素置信度的新模型。该网络主要有两个创新点:设计三重注意力模块,利用预测图的特点直接生成前景、背景和边缘注意力,并且生成注意力权重的过程不增加任何参数;设计边缘预测模块,在分辨率较高的网络浅层进行有监督的边缘预测,并与网络深层的显著图预测融合,细化了边缘。在6种常用公开数据集上用定性和定量的方法评估了该模型,并且与其他模型进行充分对比,证明设计的新模型能够取得最优的效果。此外,该模型参数量为30.28 M,可以在GTX 1080 Ti显卡上达到31 帧·s-1的预测速度。  相似文献   

15.
针对单一声学特征和k-means算法在说话人聚类技术中的局限性,为了更好地表达说话人的个性信息并提高说话人聚类的准确率,将特征融合和AE-SOM神经网络应用于说话人聚类中,提出一种改进的说话人聚类算法.该算法通过对语音信号特征分析,将MFCC特征参数和LPCC特征参数相结合,从而完善说话人的个性信息.并在k-means...  相似文献   

16.
针对传统的车辆检测技术检测速度慢和精度低的问题,提出了一种融合注意力的自适应金字塔网络的交通目标检测算法(fusion attentiont adaptive pyramid network,FAAP-Net),可以显著降低交通事故的发生率。为了降低计算复杂度,设计了一种轻量级的互补池化结构(CPS),该结构在宽度和高度上采用了两组不同的池化组合,在保持高精度的同时,显著降低了网络的浮点运算数(GFLOPs)和参数量。为了解决智能交通系统特征图生成过程中的信息损失问题,通过将自适应注意力模块(AAM)和特征增强模块(FEM)引入自适应融合特征金字塔网络(AF-FPN),以融入车辆检测的形状特征。针对车辆细节特征表征弱的问题,引入了一种按通道维度分组的注意力(SA)机制,以增强主干网络对不同车辆检测细节特征的关注,有效提取车辆细节的显著特征。在BDD100K数据集上的实验结果表明,FAAP-Net算法相比于传统算法,平均精度从30.3%提升到43.7%。  相似文献   

17.
为了提高目标跟踪算法在复杂环境下的稳健性,提出了一种将基于颜色特征的均值漂移算法和SURF(Speeded UpRobust Features)特征匹配算法相融合的目标跟踪方法。该算法首先采用颜色特征和SURF特征分别描述目标模板,利用均值漂移算法快速估计目标局部最优解。但仅采用单一颜色特征来估计目标位置,跟踪误差逐渐累积;采用SURF算法精确估算目标位置和尺度,及时修正累积误差。最后根据相似性度量Bhattacharyya系数选择较优的结果作为当前帧跟踪结果,且更新目标模板。实验结果表明,算法在目标发生较大形变、尺度变化、周边具有表观相似目标时具有很强的稳健性,且满足跟踪实时性要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号