首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
股票投资是一项非常复杂的活动。对股票走势的正确预测是非常重要的。本文基于BP神经网络预测模型,对未来股票的走势进行预测,通过实例分析及实际结果,表明BP神经网络的准确性和科学性。  相似文献   

2.
基于BP算法的股票均价预测技术研究   总被引:2,自引:0,他引:2  
介绍了神经网络的基本概念和组成,提出了BP算法的改进型算法及基于BP算法的均价预测模型.借助前馈神经网络对非线性函数的逼近能力,对青岛海尔股价进行连续若干天的预测.通过不同形式误差函数对预测结果的比较,证实改进后BP算法用于均价预测的可行性及准确性.  相似文献   

3.
股票市场是国民经济发展变化的"晴雨表",股票价格的涨跌也是政治、经济、社会等诸多因素的综合反映.近几年来,神经网络取得较大发展已经成为热点研究并在各个领域中得到应用.文章基于主成分分析和BP神经网络,以中国石化100天股票历史技术指标数据作为训练样本对收盘价进行预测,20天数据进行检验,并通过图像仿真拟合来验证神经网络股票预测的可行性和准确性.  相似文献   

4.
介绍用BP网络进行预测的一般原理和方法,并以长春华联股票为例阐明了BP网络在股市预测方面的应用.  相似文献   

5.
股票价格的预测是广大投资者非常关注的问题,也是诸多学者不断研究的方向,神经网络具有学习样本规律的特点,通过神经网络预测股票价格是近几年研究的重点之一。Copula EDA-BP混合优化算法是利用了copula EDA的全局寻优和BP算法局部求精的特点,将两者结合起来建立了基于copula EDA-BP的模型系统,优化神经网络的权值阈值,对股票上证180的收盘价进行预测得到误差率,结果显示copula EDA-BP算法平均误差率低于BP算法,提高了传统BP神经网络的计算精度。  相似文献   

6.
采用BP神经网络模型建立了大石板滑坡在降雨条件下,地下水位下降雨过程之间的非线性关系,并预测了诱发滑坡的1983年6-7月典型降雨过程引起的地下水位。为大石板滑坡地下水渗流分析特征水头边界条件和反分析滑坡体土体的饱和渗透系数Ks提供了基本的水文地质资料。  相似文献   

7.
本文采用权值可在线调整的动态补偿神经网络(动态BP网络)对模型预测误差进行拟合,从而显著提高了基于线性模型的非线性广义预测(GPC)的预测精度,增强了算法的鲁棒性。仿真实验证明了该算法的有效。  相似文献   

8.
万睿 《科技资讯》2022,(6):129-132
该文运用GARCH模型,根据沪深300指数对股市波动性推理预测,让投资者决定的策略更精准,对其起到指导作用。成果显示使用GARCH模型有利于增长股票市场推测的精准性,更具备适用性。沪深300指数使投资者在金融市场上可以避免一定风险,但同时也会增加投资者的数目,从而加剧金融市场的波动性。所以,该文以入股的收益率为参数,建立模型。  相似文献   

9.
利用时间序列在t时刻的有效观测值去预测在某个未来时刻t+l的值,并建立自回归移动平均(ARMA)模型,以MATLAB为工具,亚泰集团360个交易日的数据作为样本,预测10天股市的收盘价;并与含有一个隐含层的BP网络模型进行对比,结果表明自回归移动平均(ARMA)模型算法对短期股价预测的精度较高.  相似文献   

10.
对股票交易数据进行有效的分析处理,发现其中内在的相互联系,这对指导投资决策具有重要的意义.以股票交易数据为研究对象,采用分割提速法和多线程并行计算方式,提出一个股票预测并行方法.该方法使用Apriori算法的分割提速法进行加速运算,采用多线程并行计算方式将计算量平均分配给所有参与计算的计算机,同时应用网络编程技术实时同步回收结果.实验结果表明,该方法能够有效地缩短股票关联规则的计算时间,提高挖掘效率,进而为股票投资提供有力帮助.  相似文献   

11.
基于贝叶斯正则化BP神经网络的股票指数预测   总被引:1,自引:1,他引:0  
提出了利用贝叶斯正则化BP神经网络对股票指数进行预测.通过对比实验表明,贝叶斯正则化的BP神经网络比相同条件下采用其他改进算法有较好的泛化能力,对股票指数预测有很好的效果.  相似文献   

12.
针对传统预测模型易陷入过拟合、缺失数据敏感、计算量大等不足,利用随机森林算法的双重随机性、处理数据集优异等特点,对A股股票涨跌预测进行研究。首先运用相关性分析对初始指标体系进行一次Spearman和二次Pearson筛选,去除指标体系中的冗余指标。然后对随机森林的各项重要参数进行优化,并对优化后的模型采用重要性估计方法以提升训练模型精确度。通过不同指标体系的对比,验证实验过程的正确性。最后,对比不同建模方法的实证预测结果,表明随机森林模型比传统机器学习方法二元logistic回归在性能上更优越,具备较高的预测准确度。  相似文献   

13.
基于BP算法的泥沙含量预测研究   总被引:1,自引:0,他引:1  
长江口北槽是长江的主航道,泥沙的淤积对航运和河道治理有着极为重要的影响。根据ADCP资料,应用BP算法对长江口的泥沙含量进行了研究,建立了泥沙含量预测模型并根据实例资料进行了验证,实现了根据ADCP资料推求泥沙含量,其结果满足精度要求。  相似文献   

14.
利用菌群算法提出了一种新的菌群RBF神经网络算法,并将其应用到股票价格预测,同时在预测中引入了技术指标模型。仿真试验表明,相比于传统的RBF神经网络算法,菌群RBF神经网络算法可以得到更好的训练效率和预测结果。  相似文献   

15.
股票市场预测一直是金融市场分析中的热点和难点,一些传统的预测模型很难对股票市场做出有效的预测;针对这一问题,将分形插值方法与机器学习算法相结合,提出了分形插值与SVM以及分形插值与BP神经网络两种混合模型;所提的混合模型利用机器学习算法首先计算出分形插值所需要的插值点,然后建立分形插值外推模型对所需其他值进行预测;实证结果发现两个混合模型的预测效果均比单独使用分形插值模型预测效果更佳,预测精度更高;因此分形插值方法与机器学习算法相结合所得到的混合模型,能较好地预测诸如股票市场指数等非平稳金融时间序列。  相似文献   

16.
通过构造新的差值-比例矩阵,对2012年的沪铜期货价格建立了基于算术平均最小贴近度和BP神经网络的变权组合预测模型,并对沪铜期货价格进行了实证研究.结果表明,基于算术平均最小贴近度和BP神经网络的变权组合预测模型的预测精度明显高于各个单模型的预测精度,说明了此变权组合预测模型是有效的.  相似文献   

17.
文章通过分析调查影响自贡房地产市场的主要因素,基于BP神经网络,结合自贡住宅市场的实际情况,建立两类BP神经网络预测模型:基于时间序列的趋势预测模型、基于影响因素的回归预测模型,预测了自贡房地产市场价格走势。模拟预测2010年的结果证明了2011年房价预测的有效性,可为自贡城市建设的可持续发展提供有价值的指导意见。  相似文献   

18.
贝叶斯网络说明变量集合的联合条件概率分布为自然地表示因果信息提供了一种方法.用贝叶斯网络进行预测的核心问题是选择最符合样本数据的网络结构,即根据数据样本D和先验知识ζ找出后验概率户(Sh|D,ζ)最大的贝叶斯网络S.提出了一种基于贝叶斯网络的实时行情预测算法,并对其数据结构与实现方法进行了阐述.  相似文献   

19.
采用遗传学习算法对神经网络BP模型的初始权重进行优化,即先用遗传学习算法进行全局训练,再用BP算法进行精确训练,使网络收敛速度加快和避免局部极小。将该方法运用于洪水预报问题,并利用山西省文峪河水库的历史资料条件建立一个网络,以洪水预报的各种控制因素相关资料作为样本,对网络进行训练并用训练好的网络进行预报。网络的训练速度及预报结果表明,该算法收敛速度较快,预测精度很高,为洪水预报提供了一种新思路和新方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号