首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
有机硅改性的环氧树脂热焓松弛非线性拟合   总被引:1,自引:1,他引:0  
用差示热分析方法研究反应性和非反应性有机硅改性的环氧树脂热焓松弛行为,并用Kohlransch-Williams-Watts方程拟合。结果表明,除了自由体积之外、分子链柔顺性是影响物理老化速度的重要因素。  相似文献   

2.
有机硅改性酚醛树脂的研究   总被引:1,自引:0,他引:1  
电导实验表明:有机硅的加入对合成的酚醛树脂的交联密度有影响.改性酚醛树脂的各项常规指标均优于普通酚醛树脂,其中残碳率可以达到50.75%,比普通酚醛树脂的残碳率(40.80%)提高了近10%.FESEM照片可以看到有机硅改性酚醛树脂在800℃碳化后生成了碳纤维,而且所生成半径大致为350~450 nm的SiO2粒子分布...  相似文献   

3.
电导实验表明:有机硅的加入对合成的酚醛树脂的交联密度有影响.改性酚醛树脂的各项常规指标均优于普通酚醛树脂,其中残碳率可以达到50.75%,比普通酚醛树脂的残碳率(40.80%)提高了近10%.FESEM照片可以看到有机硅改性酚醛树脂在800℃碳化后生成了碳纤维,而且所生成半径大致为350~450 nm的SiO2粒子分布于酚醛树脂的碳化物中,分布较均匀且与基体的结合较好,有机-无机杂化改性有利于酚醛树脂力学性能的提高.  相似文献   

4.
聚氨酯改性用有机硅的种类及其改性机理   总被引:2,自引:0,他引:2  
聚氨酯改性用有机硅的种类有4种,分别对这4种有机硅共聚改性聚氨酯的研究进行了论述,介绍了复合材料的改性机理、性能和应用。  相似文献   

5.
肖潇  王林 《科技资讯》2008,(29):8-8
利用聚氨酯改性环氧树脂是提高环氧树脂综合性能的有效途径,综述了各种聚氨酯改性环氧树脂的改性方法。  相似文献   

6.
用4, 4′-二氨基二苯基砜(DDS)做固化剂,采用聚酰胺酸(PAA)对环氧树脂(EP)进行改性,研究了PAA用量、固化剂用量和反应时间对环氧树脂耐热性的影响,采用TG测定不同配比、预反应时间及不同固化温度下改性EP的耐热性,利用SEM对最佳配比固化后样品的表面和断面形貌进行了分析.结果表明,改性树脂最佳固化工艺条件为:120 ℃,1 h→150 ℃,1 h→170 ℃,2 h→200 ℃,2 h→250 ℃,2 h;改性树脂配比为mEP∶mPAA∶mDDS=1∶0.75∶0.08;预反应时间3 h,改性EP的热分解温度为411 ℃,比未改姓EP提高了近80 ℃以上;EP/PAA/DDS固化后样品无明显的两相结构,树脂的相容性较好.  相似文献   

7.
改性有机硅消泡剂的制备   总被引:8,自引:0,他引:8  
采用正交设计实验法以二甲基硅油及聚醚为主要原料制备了一种新型改性有机硅消泡剂.通过消泡实验及稳定性实验确定了该消泡剂的制备工艺:硅油质量分数为86%,聚醚9%,催化剂0.1%;反应温度为200℃,反应时间为2 h;采用HLB值为9左右的复合乳化剂可得到稳定的高效消泡剂.  相似文献   

8.
氟改性有机硅丙烯酸涂料的研究   总被引:6,自引:0,他引:6  
研究以 D4 、D3F、D4 CH2 =CH2 为原料制备含氟有机硅 ,及以甲基丙烯酸甲酯 (MMA )、甲基丙烯酸丁酯、甲基丙烯酸、丙烯酸和 D4 、D3F、D4 CH2 =CH2 为原料 ,用溶液聚合方法制备氟改性有机硅丙烯酸酯乳液 ,并用红外光谱分析法对聚合物进行了表征 .还探讨了含氟有机硅聚合过程中温度和真空度的影响及溶液聚合制备过程中温度、合成工艺、配方的影响 .  相似文献   

9.
介绍了环氧树脂的结构及性能,论述了3种类型的环氧树脂的化学改性,对近年来环氧树脂的改性研究进展情况进行了综述。  相似文献   

10.
二甲基二氯硅烷改性接枝环氧树脂的合成研究   总被引:1,自引:0,他引:1  
谌开红  游胜勇 《江西科学》2009,27(5):685-687,709
环氧树脂与甲基丙烯酸、甲基丙烯酸甲酯以及苯乙烯接枝共聚,合成了接枝环氧树脂水分散体,采用二甲基二氯硅烷(DMS)来改性接枝环氧树脂分散体,通过对乳液的粒径分析以及对聚合产物的结构表征,并考察了乳液及涂膜性能的影响。研究表明,有机硅的引入影响接枝环氧水分散体的粒径分布,提高了固化涂膜的热分解温度,提高了固化涂膜的耐水性、粘结性和机械性能。  相似文献   

11.
曼尼希型改性二乙烯三胺环氧树脂固化剂研究   总被引:6,自引:0,他引:6  
对二乙烯三胺(DETA)环氧树脂固化剂进行了曼尼希改性及其固化性能研究。实验结果表明:在给定的反应条件下,选择合适的原料配比,可制备出具有合适的粘度,适中的胺值以及游离酚含量小于5%的曼尼希型改性二乙烯三胺环氧树脂固化剂,但二者的粘接剪切强度相似。  相似文献   

12.
聚醚改性有机硅消泡剂的应用研究   总被引:10,自引:0,他引:10  
以聚醚和二甲硅油为原料研制了一种新型消泡剂,通过改变温度、pH值及消泡剂的加入量,确定了该消泡剂的最佳适用条件:弱碱及弱酸性环境,溶液体系pH值为8,起泡液的温度为80℃,消泡剂的加入量为起泡液体积的3‰。  相似文献   

13.
有机硅改性丙烯酸酯微乳液的聚合研究   总被引:5,自引:0,他引:5  
采用半连续乳液聚合法合成了有机硅改性丙烯酸酯微乳液.讨论了各聚合条件、有机硅和聚合物浓度等对硅丙微乳液合成的影响,结果表明,乳化剂配比SDS/TMS=4∶1,反应温度65~75℃,电解质用量0 3g时有利于合成平均粒径40~80nm,分布均匀(分散系数<0 2),固质量分数高达35%的硅丙微乳液.TEM,BI-200SMGoniometer观察和测试了乳胶粒形态、大小及分布,FTIR谱图分析表明反应生成了有机硅改性丙烯酸酯聚合物.  相似文献   

14.
有机硅改性聚丙烯酸酯浆料研究   总被引:1,自引:0,他引:1  
本文探讨了有机硅改性聚丙烯酸酯乳液的制备条件,并考察了其用作经纱上浆用浆料的各项浆液浆膜性能。结果表明,有机硅改性聚丙烯酸酯浆料的最佳合成条件为:温度80℃,引发剂用量2.0%,搅拌速度400转/min和有机硅用量0.25%。有机硅单体的引入,可使浆纱的耐磨性得到提高,但随着有机硅含量的增加,浆膜性能下降。  相似文献   

15.
环氧树脂的增韧改性研究进展   总被引:2,自引:0,他引:2  
陈晓松  刘日鑫 《科技信息》2009,(35):320-320,324
本文总结对比了国内外有关环氧树脂的各种增韧技术的增韧机理、研究发展现状及优缺点,并对环氧树脂增韧技术的发展趋势进行了展望。  相似文献   

16.
可溶性聚醚醚酮改性环氧树脂的研究   总被引:2,自引:0,他引:2  
采用热熔法制备了一系列可溶性聚醚醚酮(s-PEEK)改性环氧树脂(EP),并与普通聚醚醚酮(PEEK)改性环氧体系进行比较,探讨了聚醚醚酮类型、用量对改性树脂固化体系的凝胶时间、冲击强度、弯曲性能和断裂形貌的影响,并对含 s-PEEK 树脂体系的玻璃化转变温度(Tg)和热稳定性进行了分析。结果表明,s-PEEK 和 PEEK 可在提高环氧体系冲击性能的同时,提高材料的弯曲性能、玻璃化温度和热稳定性;当 m(s-PEEK) ∶ m(E-51)和 m(PEEK) ∶ m(E-51)均为 5 ∶ 100 时,冲击强度达到 42.6 和 46.6 kJ/m2,分别比未改性的环氧体系提高69.1%和85.6%; m(s-PEEK) ∶ m(E-51)=25 ∶ 100 时,Tg=179.1 ℃,比未改性环氧树脂提高20 ℃左右;且含s-PEEK的体系是均相体系,含s-PEEK的固化物是颗粒增强体系。  相似文献   

17.
利用液体橡胶改性环氧树脂是提高环氧树脂综合性能的最成功的方法之一,介绍了不同种类的液体橡胶改性环氧树脂的情况。  相似文献   

18.
超支化环氧树脂改性环氧树脂共混材料的制备与性能研究   总被引:1,自引:0,他引:1  
以三羟甲基丙烷(TMP)和2,2一二羟甲基丙酸(DMPA)为反应单体,采用一步法合成了超支化聚合物.然后与环氧氯丙烷反应合成了低粘度液体型超支化环氧树脂,并与双酚A型环氧树脂共混,固化成型后得超支化环氧树脂改性环氧树脂共混材料.测试了共混材料的力学性能、热性能.探讨了超支化环氧树脂加入量对材料性能的影响.结果显示:共混材料的力学性能随超支化环氧树脂含量的增加先增加后下降,有最大值;当超支化环氧树脂用量为15wt%左右时,共混材料的冲击强度、拉伸强度、弯曲强度分别提高108%、83%、42%.玻璃化转变温度和热分解温度稍有下降.  相似文献   

19.
室温固化有机硅改性醇酸瓷漆的研究   总被引:1,自引:0,他引:1  
陈兴娟 《应用科技》2002,29(8):59-60
通过实验制备有机硅中间体,并对醇酸树脂进行改性,制备室温固化有机硅改性醇酸瓷漆,以改进纯醇酸树脂的性能。  相似文献   

20.
合成了高沸醇木质素环氧树脂亲水衍生物和水性环氧树脂乳液,并用红外光谱对高沸醇木质素环氧树脂亲水衍生物进行了表征.研究了乳化剂用量对水性环氧树脂稳定性的影响,并用环境扫描电镜对试样形貌进行了表征.结果表明,当乳化剂用量大于环氧树脂质量份的13%时,水性环氧树脂稳定;水性环氧树脂乳液对水泥砂浆韧性的改善要好于高沸醇木质素环氧树脂亲水衍生物;环境扫描电镜结果表明,聚合物在水泥水化产物表面形成了三维结构.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号