首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The fatality of cancer predominantly results from the dissemination of primary tumor cells to distant sites and the subsequent formation of metastases. During tumor progression, some of the primary tumor cells as well as the tumor microenvironment undergo characteristic molecular changes, which are essential for the metastatic dissemination of tumor cells. In this review, we will discuss recent insights into pro-metastatic events occurring in tumor cells themselves and in the tumor stroma. Tumor cell-intrinsic alterations include the loss of cell polarity and alterations in cell-cell and cell-matrix adhesion as well as deregulated receptor kinase signaling, which together support detachment, migration and invasion of tumor cells. On the other hand, the tumor stroma, including endothelial cells, fibroblasts and cells of the immune system, is engaged in an active molecular crosstalk within the tumor microenvironment. Subsequent activation of blood vessel and lymph vessel angiogenesis together with inflammatory and immune-suppressive responses further promotes cancer cell migration and invasion, as well as initiation of the metastatic process. Received 4 July 2005; received after revision 3 November 2005; accepted 14 November 2005  相似文献   

2.
3.
The migration of T cells and access to tumor antigens is of utmost importance for the induction of protective anti-tumor immunity. Once having entered a malignant site, T cells encounter a complex environment composed of non-tumor cells along with the extracellular matrix (ECM). It is now well accepted that a deregulated ECM favors tumor progression and metastasis. Recent progress in imaging technologies has also highlighted the impact of the matrix architecture found in solid tumor on immune cells and especially T cells. In this review, we argue that the ability of T cells to mount an antitumor response is dependent on the matrix structure, more precisely on the balance between pro-migratory reticular fiber networks and unfavorable migration zones composed of dense and aligned ECM structures. Thus, the matrix architecture, that has long been considered to merely provide the structural framework of connective tissues, can play a key role in facilitating or suppressing the antitumor immune surveillance. A new challenge in cancer therapy will be to develop approaches aimed at altering the architecture of the tumor stroma, rendering it more permissive to antitumor T cells.  相似文献   

4.
Mechanotransduction encompasses the role of mechanical forces in controlling cell behavior by activating signal transduction pathways. Most forces at a cellular level are caused by myosin II, which contracts and cross-links actin. Myosin II-dependent forces are transmitted through the actin cytoskeleton to molecular endpoints that promote specific cellular outcomes, e.g., cell proliferation, adhesion, or migration. For example, most adhesive and migratory phenomena are mechanically linked by a molecular clutch comprised of mechanosensitive scaffolds. Myosin II activation and mechanosensitive molecular mechanisms are finely tuned and spatiotemporally integrated to coordinate morphogenetic events during development. Mechanical events dependent on myosin II also participate in tumor cell proliferation, invasion, and metastatic dissemination. Specifically, tumor cells alter the mechanical properties of the microenvironment to create favorable conditions for proliferation and/or dissemination. These observations position myosin II-dependent force generation and mechanotransduction at the crossroads between normal development and cancer.  相似文献   

5.
Genes involved in breast cancer metastasis to bone   总被引:12,自引:0,他引:12  
Metastasis to bone occurs frequently in advanced breast cancer and is accompanied by debilitating skeletal complications. Current treatments are palliative and new therapies that specifically prevent the spread of breast cancer to bone are urgently required. While our understanding of interactions between breast cancer cells and bone cells has greatly improved, we still know little about the molecular determinants that regulate specific homing of breast cancer cells to the bone. In this review, we focus on genes that have been implicated in migration and adhesion of breast cancer cells to bone, as well as genes that promote tumor cell proliferation in the bone microenvironment. In addition, the review discusses new technologies, including better animal models, that will further assist with the identification of the molecular determinants of bone metastasis and will guide the development of new therapies. Received 25 January 2002; received after revision 27 March 2002; accepted 5 April 2002 RID="*" ID="*"Corresponding author.  相似文献   

6.
Pancreatic ductal adenocarcinoma (PDA) is a fatal and insidious malignant disease for which clinicians’ tools are restricted by the current limits in knowledge of how tumor and stromal cells act during the disease. Among PDA hallmarks, neural remodeling (NR) and perineural invasion (PNI) drastically influence quality of life and patient survival. Indeed, NR and PNI are associated with neuropathic pain and metastasis, respectively, both of which impact clinicians’ decisions and therapeutic options. The aim of this study was to determine the impact and clinical relevance of the peritumoral microenvironment, through pancreatitis-associated protein (PAP/REG3A) expression, on PNI in pancreatic cancer. First, we demonstrated that, in PDA, PAP/REG3A is produced by inflamed acinar cells from the peritumoral microenvironment and then enhances the migratory and invasive abilities of cancer cells. More specifically, using perineural ex vivo assays we revealed that PAP/REG3A favors PNI through activation of the JAK/STAT signaling pathway in cancer cells. Finally, we analyzed the level of PAP/REG3A in blood from healthy donors or patients with PDA from three independent cohorts. Patients with high levels of PAP/REG3A had overall shorter survival as well as poor surgical outcomes with reduced disease-free survival. Our study provides a rationale for using the PAP/REG3A level as a biomarker to improve pancreatic cancer prognosis. It also suggests that therapeutic targeting of PAP/REG3A activity in PDA could limit tumor cell aggressiveness and PNI.  相似文献   

7.
Although surgical excision, chemo-, and radio-therapy are clearly advanced, tumors may relapse due to cells of the so-called “minimal residual disease”. Indeed, small clusters of tumor cells persist in host tissues after treatment of the primary tumor elaborating strategies to survive and escape from immunological attacks before their relapse: this variable period of remission is known as “cancer dormancy”. Therefore, it is crucial to understand and consider the major concepts addressing dormancy, to identify new targets and disclose potential clinical strategies. Here, we have particularly focused the relationships between tumor microenvironment and cancer dormancy, looking at a re-appreciated aspect of this compartment that is the low extracellular pH. Accumulating evidences indicate that acidity of tumor microenvironment is associated with a poor prognosis of tumor-bearing patients, stimulates a chemo- and radio-therapy resistant phenotype, and suppresses the tumoricidal activity of cytotoxic lymphocytes and natural killer cells, and all these aspects are useful for dormancy. Therefore, this review discusses the possibility that acidity of tumor microenvironment may provide a new, not previously suggested, adequate milieu for “dormancy” of tumor cells.  相似文献   

8.
9.
Mast cells are multipotent effector cells of the immune system. They are able to induce and enhance angiogenesis via multiple pathways. (-)-Epigallocatechin-3-gallate (EGCG), a major component of green tea and a putative chemopreventive agent, was reported to inhibit tumor invasion and angiogenesis, processes that are essential for tumor growth and metastasis. Using the human mast cell line HMC-1 and commercial cDNA macroarrays, we evaluated the effect of EGCG on the expression of angiogenesis-related genes. Our data show that among other effects, EGCG treatment reduces expression of two integrins (alpha5 and beta3) and a chemokine (MCP1), resulting in a lower adhesion of mast cells associated with a decreased potential to produce signals eliciting monocyte recruitment. These effects on gene expression levels are functionally validated by showing inhibitory effects in adhesion, aggregation, migration and recruitment assays.  相似文献   

10.
Dendritic cells (DC) play a pivotal role in the tumor microenvironment (TME). As the primary antigen-presenting cells in the tumor, DCs modulate anti-tumor responses by regulating the magnitude and duration of infiltrating cytotoxic T lymphocyte responses. Unfortunately, due to the immunosuppressive nature of the TME, as well as the inherent plasticity of DCs, tumor DCs are often dysfunctional, a phenomenon that contributes to immune evasion. Recent progresses in our understanding of tumor DC biology have revealed potential molecular targets that allow us to improve tumor DC immunogenicity and cancer immunotherapy. Here, we review the molecular mechanisms that drive tumor DC dysfunction. We discuss recent advances in our understanding of tumor DC ontogeny, tumor DC subset heterogeneity, and factors in the tumor microenvironment that affect DC recruitment, differentiation, and function. Finally, we describe potential strategies to optimize tumor DC function in the context of cancer therapy.  相似文献   

11.
Thrombospondins: from structure to therapeutics   总被引:2,自引:0,他引:2  
The thrombospondins (TSPs) are a family of five proteins that are involved in the tissue remodeling that is associated with embryonic development, wound healing, synaptogenesis, and neoplasia. These proteins mediate the interaction of normal and neoplastic cells with the extracellular matrix and surrounding tissue. In the tumor microenvironment, TSP-1 has been shown to suppress tumor growth by inhibiting angiogenesis and by activating transforming growth factor beta. TSP-1 inhibits angiogenesis through direct effects on endothelial cell migration and survival, and through effects on vascular endothelial cell growth factor bioavailability. In addition, TSP-1 may affect tumor cell function through interaction with cell surface receptors and regulation of extracellular proteases. Whereas the role of TSP-1 in the tumor microenvironment is the best characterized, the other TSPs may have similar functions. (Part of a Multi-author Review).  相似文献   

12.
Chemokines are a vertebrate-specific group of small molecules that regulate cell migration and behaviour in diverse contexts. So far, around 50 chemokines have been identified in humans, which bind to 18 different chemokine receptors. These are members of the seven-transmembrane receptor family. Initially, chemokines were identified as modulators of the immune response. Subsequently, they were also shown to regulate cell migration during embryonic development. Here, we discuss the influence of chemokines and their receptors on angiogenesis, or the formation of new blood vessels. We highlight recent advances in our understanding of how chemokine signalling might directly influence endothelial cell migration. We furthermore examine the contributions of chemokine signalling in immune cells during this process. Finally, we explore possible implications for disease settings, such as chronic inflammation and tumour progression.  相似文献   

13.
The proliferation ability of satellite cells (considered the 'stem cells' of mature myofibers) declines with increasing age when cultured under standard cell culture conditions of 21% oxygen. However, actual oxygen levels in the intact myofiber in vivo are an order of magnitude lower. No studies to date have addressed the issue of whether culturing satellite cells from old muscles under more 'physiologic' conditions would enhance their proliferation and/or differentiation ability. Therefore, we analyzed satellite cells derived from 31-month-old rats in standard cultures with 21% O2 and in lowered (∼3%) O2. Under the lowered O2 conditions, we noted a remarkable increase in the percentage of large-sized colonies, activation of cell cycle progression factors, phosphorylation of Akt, and downregulation of the cell cycle inhibitor p27Kip1. These data suggest that lower O2 levels provide a milieu that stimulates proliferation by allowing continued cell cycle progression, to result ultimately in the enhanced in vitro replicative life span of the old satellite cells. Such a method therefore provides an improved means for the ex vivo generation of progenitor satellite cell populations for potential therapeutic stem cell transplantation. Received 20 April 2001; received after revision 28 May 2001; accepted 31 May 2001  相似文献   

14.
Tumor microenvironment consists of tumor cells, stromal cells, extracellular matrix and a plethora of soluble components. The complex array of interactions between tumor cells and their surrounding tumor microenvironments contribute to the determination of the fate of tumor cells during tumorigenesis and metastasis. Matricellular protein periostin is generally absent in most adult tissues but is highly expressed in tumor microenvironments. Current evidence reveals that periostin plays a critical role in establishing and remodeling tumor microenvironments such as the metastatic niche, cancer stem cell niche, perivascular niche, pre-metastatic niche, fibrotic microenvironment and bone marrow microenvironment. Here, we summarize the current knowledge of the multifaceted role of periostin in the tumor microenvironments.  相似文献   

15.
The bone marrow microenvironment (BMM) regulates the fate of hematopoietic stem cells (HSCs) in homeostatic and pathologic conditions. In myeloid malignancies, new insights into the role of the BMM and its cellular and molecular actors in the progression of the diseases have started to emerge. In this review, we will focus on describing the major players of the HSC niche and the role of the altered niche function in myeloid malignancies, more specifically focusing on the mesenchymal stroma cell compartment.  相似文献   

16.
Mechanisms of glial-guided neuronal migration in vitro and in vivo   总被引:6,自引:0,他引:6  
M E Hatten  C A Mason 《Experientia》1990,46(9):907-916
Our laboratory has developed an in vitro model system in which glial-guided neuronal migration can be observed in real time. Cerebellar granule neurons migrate on astroglial fibers by apposing their cell soma against the glial arm, forming a specialized migration junction, and extending a motile leading process in the direction of migration. In vitro assays indicate that the neuronal antigen astrotactin functions as a neuron-glia ligand, and is likely to play a role in the movement of neurons along glial fibers. In heterotypic recombinations of neurons and glia from mouse cerebellum and rat hippocampus, neurons migrate on heterotypic glial processes with a cytology, speed and mode of movement identical to that of neuronal migration on homotypic glial fibers, suggesting that glial fibers provide a permissive pathway for neuronal migration in developing brain. In vivo analyses of developing cerebellum demonstrate a close coordination of afferent axon ingrowth relative to target cell migration. These studies indicate that climbing fibers contact immature Purkinje neurons during the migration and settling of Purkinje cells, implicating a role for afferents in the termination of migration.  相似文献   

17.
Summary Our laboratory has developed an in vitro model system in which glial-guided neuronal migration can be observed in real time. Cerebellar granule neurons migrate on astroglial fibers by apposing their cell soma against the glial arm, forming a specialized migration junction, and extending a motile leading process in the direction of migration. In vitro assays indicate that the neuronal antigen astrotactin functions as a neuron-glia ligand, and is likely to play a role in the movement of neurons along glial fibers. In heterotypic recombinations of neurons and glia from mouse cerebellum and rat hippocampus, neurons migrate on heterotypic glial processes with a cytology, speed and mode of movement identical to that of neuronal migration on homotypic glial fibers, suggesting that glial fibers provide a permissive pathway for neuronal migration in developing brain. In vivo analyses of developing cerebellum demonstrate a close coordination of afferent axon ingrowth relative to target cell migration. These studies indicate that climbing fibers contact immature Purkinje neurons during the migration and settling of Purkinje cells, implicating a role for afferents in the termination of migration.  相似文献   

18.
Ample clinical and preclinical evidence indicates that macrophages interact with tumor cells as well as with virtually all populations of host cells present in the tumor microenvironment. This crosstalk can strongly promote malignancy, but also has in principle the potential to inhibit tumor growth. Thus, it is of the utmost importance to improve our understanding of the mechanisms driving the pro- and antimalignant behavior of tumor-associated macrophages (TAMs) in order to develop better anticancer therapies. In this review, we discuss the biological consequences of reciprocal interactions between TAMs, cancer cells, endothelial cells, fibroblasts and other leukocyte subfractions within tumors. It was recently elucidated that tumors specifically educate macrophages to secrete growth arrest-specific gene 6 (Gas6), the common ligand of the Tyro3, Axl, Mer receptor (TAMR) family. In turn, Gas6 fosters tumor growth by promoting cancer cell proliferation. Therefore, the Gas6–TAMR axis might represent a novel target for disrupting tumor–macrophage crosstalk. We summarize here what is known about TAMR and their ligands in (human) cancer biology. In order to shed more light on the role of macrophages in human cancer, we additionally provide an overview of what is currently known about the prognostic impact of TAMs in human cancer.  相似文献   

19.
The protein kinase D (PKD) family of proteins are important regulators of tumor growth, development, and progression. CRT0066101, an inhibitor of PKD, has antitumor activity in multiple types of carcinomas. However, the effect and mechanism of CRT0066101 in bladder cancer are not understood. In the present study, we show that CRT0066101 suppressed the proliferation and migration of four bladder cancer cell lines in vitro. We also demonstrate that CRT0066101 blocked tumor growth in a mouse flank xenograft model of bladder cancer. To further assess the role of PKD in bladder carcinoma, we examined the three PKD isoforms and found that PKD2 was highly expressed in eight bladder cancer cell lines and in urothelial carcinoma tissues from the TCGA database, and that short hairpin RNA (shRNA)-mediated knockdown of PKD2 dramatically reduced bladder cancer growth and invasion in vitro and in vivo, suggesting that the effect of the compound in bladder cancer is mediated through inhibition of PKD2. This notion was corroborated by demonstrating that the levels of phospho-PKD2 were markedly decreased in CRT0066101-treated bladder tumor explants. Furthermore, our cell cycle analysis by flow cytometry revealed that CRT0066101 treatment or PKD2 silencing arrested bladder cancer cells at the G2/M phase, the arrest being accompanied by decreases in the levels of cyclin B1, CDK1 and phospho-CDK1 (Thr161) and increases in the levels of p27Kip1 and phospho-CDK1 (Thr14/Tyr15). Moreover, CRT0066101 downregulated the expression of Cdc25C, which dephosphorylates/activates CDK1, but enhanced the activity of the checkpoint kinase Chk1, which inhibits CDK1 by phosphorylating/inactivating Cdc25C. Finally, CRT0066101 was found to elevate the levels of Myt1, Wee1, phospho-Cdc25C (Ser216), Gadd45α, and 14-3-3 proteins, all of which reduce the CDK1-cyclin B1 complex activity. These novel findings suggest that CRT0066101 suppresses bladder cancer growth by inhibiting PKD2 through induction of G2/M cell cycle arrest, leading to the blockade of cell cycle progression.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号