首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
 回注水中的悬浮颗粒能严重堵塞储层,造成渗透率下降,导致安塞油田注水难、采油难。为了提高注水效果,急需确定安塞油田合理的回注水悬浮颗粒指标。以5 种不同的粒径的悬浮颗粒在3 种不同浓度条件下,分别对安塞天然岩心进行室内流动实验。结果表明:岩心渗透率开始随着悬浮颗粒溶液的注入缓慢下降,达到一定注入量后,能够较长时间处于某一平稳值;悬浮颗粒溶液浓度ρ>2.0 mg/L,渗透率损失大于30%;ρ≤1.0 mg/L且粒径d<0.730 μm,渗透率损失小于30%;1.0 mg/L<ρ<2.0 mg/L,且d<0.730 μm,渗透率损失有大于30%,也有小于30%,由浓度与粒径二者共同作用;0.730 μm≤d≤ 2.100 μm,渗透率损失大于30%。各油田回注水时,颗粒粒径范围区间应尽量小,其平均值应与储层的平均孔喉相差较大;安塞低渗透油藏注入悬浮颗粒溶液ρ<1.0 mg/L,d<0.730 μm。  相似文献   

2.
通过添加较大粒径的催化裂化催化剂(FCC)颗粒来改善纳米TiO2的流化性能,测最床层压降和床层膨胀曲线,研究添加颗粒的添加量以及粒径对流化质量的影响,并用R-Z方程对流化后的体系散式化程度进行分析.研究结果表明:FCC颗粒的添加量达到30%后可以显著改善纳米TiO2的流化质量;当添加量增大到40%时,压降曲线更平滑,最小流化速度减小,床层膨胀比增大,散式化程度升高;FCC颗粒的粒径越小,流化效果越好;当粒径为109120 μm的FCC添加量为30%时,实现完全流化;当粒径为96~109μm的FCC添加量为20%,气速为11.04 mm/s时,床层基本实现完全流化,偶尔有少量沉积;而当粒径为75~80μm的FCC添加量为20%时,气速约为94.32mm/s即可以实现完全流化.  相似文献   

3.
在内径为182mm的导向管喷动流化床中,用平均粒径为2.2mm的尿素为物料,对喷动流化床固体颗粒循环量进行了研究,考察了对导流管安装高度、喷动口直径和物料床层高度的变化对固体颗粒循环量的影响.实验中发现了当喷动流化床环形区处于移动床状态时,导向管安装高度越高、喷动口直径越大、物料静止床层高度越高,固体颗粒循环量也越大;当环形区处于流化床状态时,喷动口直径和导向管安装高度对固体颗粒循环量影响不大,而物料静止床层高度越高,固体颗粒循环量越大.结果表明,在环形区处于移动床和流化床两种状态下,导向管安装高度和喷动口直径对固体颗粒循环量的影响是不同的.  相似文献   

4.
木屑-石英砂喷动流化床内流动特性研究   总被引:3,自引:0,他引:3  
为了开发喷动流化床生物质裂解反应器,建立了一内径为150mm的有机玻璃冷模实验装置,在室温下进行了生物质(木屑)和石英砂混合物在喷动流化床内的流动特性研究。考察了木屑、木屑与石英砂混合物的喷动流化现象。结果发现在喷动流化床其它条件相同时,床层中相同的木屑量,随石英砂量的增加,木屑的循环量减少;而相同的石英砂量,随木屑量的增加,石英砂的循环量增加。最小流化速度实验值与计算值相比略小但相差不大,可用Ergun公式预测床层的最小流化速度,但不能用Muthur公式来预测最小喷动速度,这是由木屑与石英砂颗粒混合物的性质和床层结构特性决定的。随着喷动气速和流化气速的改变,可观察到床内粒子表现出八种不同的流动状态:固定床区、流化床区、局部喷动床区、流化一局部喷动床区、喷动床区、喷动流化床区、喷动垂直输送区、喷动流化垂直输送区。  相似文献   

5.
大颗粒气固流化床内两相流动的CFD模拟   总被引:2,自引:2,他引:0  
采用欧拉双流体模型和颗粒动力学方法,数值模拟了大颗粒流化床在不同密度、布风装置及曳力模型情况下的气固两相流动,考察了大颗粒流化床流化和流动特点,颗粒体积分率分布,床层压力瞬时变化,床层碰撞比,以及颗粒速度径向和空隙率轴向分布规律.研究结果表明,与直型布风板流化床比较,凹型布风板流化床内的气泡产生快,颗粒横向运动能力强;随着颗粒密度的增大,其在凹型布风板流化床边壁处的速度比中心位置处减小的快;比较3种曳力模型,发现其模拟的轴向空隙率分布和床层压力存在较大差异,且与床层膨胀比实验关联式相比,3种模型预测的值比实验关联式要大一些.通过研究,3个曳力模型中Gidaspow模型相对适用于大颗粒气固流化床的数值模拟.  相似文献   

6.
根据氧热法电石生产复合床反应器的需要,设计制作了扇形开口与矩形开口两种不同开口形状结构的布料器冷模实验装置,考察了不同布料器转速、床层高度以及开口大小下,颗粒的径向分布特征和平均质量通量。实验结果表明:扇形开口布料器的颗粒分布在径向上呈“M”型分布,而矩形开口布料器在径向上均匀分布,布料器转速、床层高度以及开口大小均对颗粒的上述分布特征基本无影响;颗粒平均质量主要受布料器开口大小控制,随开口角度增加而增加,随布料器转速、床层高度的变化不敏感。  相似文献   

7.
EGSB反应器污泥床工作特性及污泥性质的研究   总被引:3,自引:0,他引:3  
研究了膨胀颗粒污泥床(EGSB)反应器在处理高浓度肠衣废水过程中,液体表面上升流速对污泥床工作状态的影响。在COD的质量浓度为5 135.4~5 630.0 mg/L,适宜的上升流速为1.60~2.62 m/h。在此条件下,反应器内的污泥床呈膨胀状态,无不良工作状况,容积负荷在221.60~310.24 kgCOD/(m3.d)之间,COD去除率最高达82.6%,处理效果良好。反应器内的厌氧污泥性质发生了较大变化。颗粒污泥表面和内部的细菌种类和数量越来越丰富;污泥粒径也明显变大,粒径分布主要集中在0.9~2.0 mm范围内;胞外聚合物的量有所增加。  相似文献   

8.
在常温常压下用模拟渣油和模拟氢气近似模拟了微膨胀床渣油加氢处理反应器内的气液流动状态,考察了催化剂粒径和堆密度、虚拟气液流速以及催化剂装填高度对催化剂床层膨胀率的影响。实验结果表明:大粒径、低堆密度的催化剂床层膨胀率较高;虚拟气速与床层膨胀率关系曲线上存在拐点,拐点值随催化剂装填高度增加而增大;虚拟液体流速对催化剂床层膨胀率影响较小;在工业操作条件下,微膨胀床渣油加氢处理反应器的催化剂床层膨胀率小于10%;催化剂装填高度对床层膨胀率有明显的影响,催化剂装填量较大时,需要采用较高的气油比才能保证催化剂床层处于微膨胀状态。  相似文献   

9.
采用实验方法,对流化床发展段流动壁面进行图像分析,以了解颗粒簇团在壁面的流动形态。试验结果表明:颗粒簇团形状变化随风量的变化较为显著;簇团形状随风量的增大由松散、颗粒浓度小、变为密集、颗粒浓度较大;簇团数目随风量的增大而变小。同时,颗粒簇团频率随高度的变化较小,颗粒簇团频率会随着床层高度的增加而有较小的减弱趋势。  相似文献   

10.
不同类型降雨公路径流中颗粒粒径及污染物的分布特性   总被引:1,自引:0,他引:1  
在对南京机场高速禄口高架桥段雨天路面径流水质进行连续监测的基础上,考察了不同粒径段颗粒分布,重点分析了颗粒粒径分布随径流过程的变化特征及其与污染物分布的关系,并探讨了温度和pH值对粒径分布的影响.结果表明,径流中粒径小于75 μm的颗粒较多,其中0.45~20μm粒径段的颗粒最多,占总颗粒的37.5%.小雨事件中,粒径...  相似文献   

11.
声波的多尺度分解与颗粒粒径分布的实验研究   总被引:19,自引:0,他引:19  
利用颗粒运动碰撞壁面产生声波的机理以及多尺度小波分解方法,建立了Hou-Yang方程,揭示声波信号在各尺度的能量分率分布特征及粒径分布的定量关系.通过在φ为150 mm流化床冷模装置中,分别对多种聚乙烯颗粒体系进行流态化实验,确定了声波信号的小波分解的最优尺度数为7.并通过实验分析得到的单一j粒径与混合粒径的能量比λj、单一j粒径颗粒的特征谱图和混合粒径的能量谱图,实现了冷模装置和工业热态操作中流化床壁面局部区域的颗粒粒径分布的在线测量,其测量值与取样筛分分析值的平均偏差均小于15.8%.应用Hou-Yang方程还可及时预测床内颗粒粒径的异常分布,判断颗粒团聚的产生.  相似文献   

12.
陶贺 《科学技术与工程》2014,14(11):103-106,122
建立了错流移动床气固两相流动的实验系统。研究了错流移动床内单相流动和两相流动时的压降、颗粒流动对压降的影响;以及颗粒尺寸、形状对床内压降的影响。结果表明床层压降随着气速的增大而增大;气速越小,气体沿床层高度分布越均匀。颗粒流动对整床压降几乎没有影响。颗粒的粒径越小,床层压降越大。不同形状的颗粒由于空隙率和堆积结构不同导致床层压降不同,椭球形颗粒压降最大,圆柱形颗粒压降最小。另外,建立了计算不同尺寸圆柱形颗粒的压降的关联式,预测值与实验值十分吻合。  相似文献   

13.
海洋动力环境中钙质砂受荷载时的压缩变形特性是工程建设考虑的重要因素。对1~2 mm粒径钙质砂在侧限条件下进行静荷加载、冲击加载、冲击后静荷加载试验,分析试样在三种加载方式下的e-P曲线,运用Hardin模型中的相对破碎率Br值对其颗粒破碎进行度量。试验结果表明:相同荷载幅值水平下,相对静荷加载,试样对冲击加载较为敏感,其压缩变形更加明显,颗粒级配变化更显著;冲击加载时,存在临界冲击次数N_(cr),此时试样孔隙比趋于稳定;且冲击荷载幅值越大,相应临界冲击次数N_(cr)值越大;同时发现冲击加载会影响试样压缩性,冲击加载时试样颗粒破碎程度越高,冲击加载后静荷加载时表现的压缩性越低,颗粒相对破碎率B_r值变化越小,试验结论对工程建设具有一定参考意义。  相似文献   

14.
将折射率匹配技术与粒子图像测速技术结合,测量了固液搅拌槽内桨叶启动过程中的两相流动特性。实验所用搅拌槽为平底方槽,搅拌桨为45°四斜叶桨,桨叶搅拌雷诺数389~2 332,固体颗粒的最大体积分数15%。实验考察了桨叶操作方式、搅拌转速和固含率对搅拌槽内瞬态颗粒分布和颗粒床层处瞬时流场的影响规律,结果表明:相同转速下桨叶为上提操作时流体对颗粒床层的侵蚀作用强于下压操作,颗粒开始悬浮的时间早,但悬浮高度较低;随着搅拌转速的增加,流体对颗粒床层的侵蚀作用增强,体系达到稳态后搅拌槽内颗粒云的均一度和高度也出现上升趋势;固含率从5%增加至15%时,搅拌槽内悬浮起的颗粒数量增加;流体侵蚀颗粒床层的临界速度范围在0.1~0.25 m/s。  相似文献   

15.
一次氧气对氢氧焰水解制备纳米TiO_2颗粒的影响   总被引:1,自引:0,他引:1  
在氢氧焰燃烧合成细米TiO2时,一次氧气浓度直接影响燃烧过程性质、火焰的特征。通过调节一次氧气浓度,可以得到大小、形貌和晶型不同的纳米颗粒。在未达到化学计量比以前,φO2增加,二氧化钛一次粒子的粒度减小,粒度分布变窄,颗粒中的金红石含量显著下降。当四氯化钛进料浓度为0.47mol/m3,φO2由0增加到0.10时,纳米TiO2颗粒平均粒径由70nm降到32nm,金红石的质量分数由0.93降到0.03。水解制备的TiO2颗粒为球形。  相似文献   

16.
颗粒粒径偏析分布是高炉炉顶布料过程中不可避免的现象,易造成炉喉处局部料层的空隙度降低和压差升高,影响煤气流的均匀分布,继而间接影响炉况的顺行。通过DEM离散单元法模拟研究二元混合颗粒的偏析分布规律,同时,提出一个偏析指数T,用以表征粒径偏析分布的相对程度。研究结果表明:同一T值图中,相邻区域颗粒的T值相差越大,则该区域颗粒的粒径偏析程度越大;不同T值图中,所有相邻T值之差的平均绝对值越大,则颗粒堆积整体粒径偏析程度越为严重。  相似文献   

17.
对FCC颗粒在截面尺寸为368 mm的方形流化床中研究了局部颗粒速度分布的基本行为。实验利用光纤探针测试了三个不同轴向高度的颗粒速度分布和静止床层高度对颗粒速度分布的影响。结果表明:截面局部颗粒速度随表观气速U g的增大同步增加,颗粒速度沿截面分布不均匀。在截面中心区,局部颗粒速度随U g增加而增加,上行颗粒速度增加更为显著。在边壁区,低气速时上、下行局部颗粒速度随U g增加而增加且增幅相近;高气速下局部颗粒速度表现出显著的波动过程。静床高度增加,对上行颗粒速度影响明显,但随着气速增加影响减弱。  相似文献   

18.
在横截面为200 mm×200 mm、高1 200 mm的方形截面冷态流化床反应器中,对4种异型模拟固体废弃物颗粒在不同床料辅助流化下的分布特性进行了试验研究.结果表明,床料密度对床层内颗粒混合的影响较大,床料密度的增大使固废颗粒的浮升趋势显著增强,单种固废颗粒在床层内的分布特性取决于床料密度与此种颗粒密度的比值ρb/ρp,且对4种固废颗粒考察后发现,当ρb/ρp≈2.4时,床层混合最为理想.床料粒径的增大同样增强了固废颗粒的浮升趋势,但提升幅度相对较小.床料体积分数增大有利于床层内颗粒的稳态混合,为保证固废流化床内良好的流化混合质量,床料体积分数应大于80%.  相似文献   

19.
为分析转炉煤气显热回收过程中被高温颗粒引燃危险性,自行设计了激光辐射加热氧化铁颗粒引燃转炉煤气实验平台.以转炉煤气/空气混合物压力及温度变化为引燃判据,研究不同初始温度及粒径颗粒引燃混合物的规律.结果表明,转炉煤气/空气混合物存在引燃敏感浓度,当受辐射颗粒粒径相同、初始温度为100℃时混合物敏感浓度比35℃时上升了5%;初始温度为35,100,200℃时,粒径1.5 mm的颗粒引燃温度比0.5 mm的分别下降137.6,145及134.5℃;颗粒粒径为0.5,1.0及1.5 mm时,初始温度为200℃时的引燃温度比35℃时分别下降了19.8,11.6及16.7℃.研究结果对高温转炉煤气进入换热器前设置除尘粒径限制具有参考意义.  相似文献   

20.
借助计算流体力学软件Fluent,采用三维贴体坐标网格,基于非稳态雷诺应力湍流模型,对旋风分离器内部流场进行数值计算.研究不同粒径固相颗粒的运动轨迹,揭示颗粒在分离器中的运动机理,得到旋风分离器内部气流切向速度、轴向速度及切面旋转矢量速度的分布规律,并与实验测试值进行比对.结果表明:在相同条件下,数值计算与实验测试结果非常接近,能很好地预测切向速度的"驼峰"结构及轴向速度分布的上行流和下行流;随着颗粒粒径的增加,分离器外壁呈螺旋流分布,内部流夹带随粒径的增加而逐渐减小.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号