首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
针对RV减速器内部构造复杂、采集到的振动信号受噪声影响严重及低频故障特征难以提取的问题,提出一种基于小波降噪结合变分模态分解(Variational Modal Decomposition, VMD)的故障诊断方法。首先利用小波降噪法对含噪声的振动信号进行降噪;再通过变分模态分解得到不同频率范围的模态分量(Intrinsic Mode Function, IMF),计算各目标分量的峭度值和信噪比,选出目标分量并进行快速傅里叶变换(Fast Fourier Transform, FFT);最后通过减速器模数确定特征频率,可以准确定位RV减速器的故障点。结果表明:该方法较传统的频谱分析可以更有效地提取故障信息,解决了噪声干扰、低频信号调制等问题。  相似文献   

2.
为提取气体管道声波信号中的泄漏成分并进行重构,提出一种结合VMD( VMD: Variational Mode Decomposition) 和误差能量算法的特征提取方法。该方法首先利用油气管道泄漏检测系统模拟气体管道的微小泄漏,并采集泄漏声波信号; 然后利用VMD 算法将采集到的泄漏声波信号分解为一系列带宽受限的固有模态;随后,使用误差能量算法选择有效模态; 最后,利用有效模态进行信号重构。通过仿真分析发现,该改进算法可以提取有效模态,利用该方法处理气体管道微小泄漏声波信号,能有效滤除噪声并重构原始信号。  相似文献   

3.
为了提高风电功率预测精度,提出了一种基于变分模态分解(VMD)和改进的最小二乘支持向量机(LSSVM)的短期风力发电功率预测新模型。利用VMD将功率历史数据分解成趋势分量、细节分量和随机分量以降低原始数据的复杂性和不平稳性,然后建立IBA-LSSVM预测模型,利用改进蝙蝠算法(IBA)对最小二乘向量机的参数进行优化,并分别对各个子模态进行预测,叠加子模态的预测结果以得到最终的发电功率预测值。对宁夏某风电厂功率预测结果证明了该模型的有效性,通过不同预测模型的对比验证了模型具有较高的预测精度。  相似文献   

4.
为解决变分模态分解(VMD)在行星齿轮箱故障特征频率提取过程出现的鲁棒性低及分解个数不确定的问题,提出一种基于最小熵反褶积(MED)和自适应变分模态分解(AVMD)的齿轮箱故障诊断方法.首先通过MED对信号进行降噪,突出故障信号特征;采用瞬时频率的新定义及变差概念,自适应选择VMD的级数;使用VMD方法将行星齿轮箱的断齿故障信号分解为若干个本征模态函数(IMF)分量;根据相关系数分析选取带有故障信号的IMF分量,对其进行包络谱分析,以提取故障特征频率.仿真信号和试验信号分析结果表明,使用MED去噪后信号的峰值信噪比提高了10%,解决了传统VMD个数经验选择出现的误差问题从而实现此过程自适应化,解决了VMD在强噪声下针对非线性非平稳信号鲁棒性低的问题,准确提取了风电齿轮箱的故障特征频率.  相似文献   

5.
刘歆  鲍鸿春 《科技资讯》2010,(25):96-96
对CO2电弧焊和MAG焊的特点、原理、工艺性能、经济性等进行了多方面的比较和分析,介绍解决实际生产中的一些问题的办法,对某结构件工厂焊接工艺进行比较、选择,得出最优化方案。  相似文献   

6.
针对群优化算法对变分模态分解所需模态数和二次惩罚项参数寻优效率较低的问题,提出了快速局部均值经验模态分解的信号预处理方法.对预处理后的模态分量根据相似系数准则进行模态数预估,同时利用多评价指标选择二次惩罚参数.针对VMD对故障信号中存在的固有振动高频带分解效果较差的问题,利用自相关能量函数实现降噪和减小高频带的影响.通过仿真实验和实测轴承故障数据分析,并与群优化算法选择参数以及中心频率相近选取模态数的VMD分解效果相比,该方法能有效提取故障信号的特征频率.   相似文献   

7.
李妍  郑丽  李琴兰 《甘肃科技纵横》2010,39(6):58-59,117
本论述介绍了目前高速MIG/MAG焊方法的发展现状,分析了高速MIG/MAG焊时易发生的主要缺陷及产生原因,以及复合焊、旁路焊接及磁控大电流MAG等高速MIG/MAG焊方法的结构、原理及特点,并对高速MIG/MAG焊接技术的进行了展望。  相似文献   

8.
为提高短期电力负荷预测精度,提出了基于变分模态分解(VMD:Variational Mode Decomposition)的CNN-BiLSTM-Att(Convolutional Neural Network-Bidirectional Long Short-Term Memory-Attention)的短期负荷预测模型。该模型将历史的负荷数据使用VMD分解成多个子序列负荷并结合天气、日期、工作日类型等因素作为输入特征,得到各个子序列负荷的预测值,然后相加重构组成实际负荷预测曲线。通过与其他模型实验对比,VMD-CNN-BiLSTM-Att模型在测试集上相比于其他模型均有所降低,在连续的周负荷预测中,日负荷预测的平均绝对百分比误差基本维持在1%~2%之间。在复杂负荷变化的非工作日中,平均绝对百分比误差相比CNN-LSTM降低0.13%。证明VMD-CNN-BiLSTM-Att短期负荷预测模型能提高电力负荷预测的精度。  相似文献   

9.
在非平稳信号时频分析中,使用Cohen核所得时频分布的交叉项抑制与时、频分辨率难以兼顾。针对此,提出一种将变分模态分解(VMD)与Cohen核相结合的时频分析方法。首先对信号进行VMD分解,得到一组具有不同频率成分,相互独立的固有模态函数(IMF)分量,然后对每个IMF分量进行Cohen核时-频变换,再线性叠加重构出原始信号的时频分布。通过仿真分析,结果表明:该方法可以在保持时频分布中较高时、频分辨率的基础上,有效消除交叉项的干扰。  相似文献   

10.
针对广义互相关(GCC:Generalized Cross-Correlation)时延估计方法在低信噪比的情况下会产生较大误差的问题,提出一种基于变分模态分解(VMD:Variational Mode Decomposition)结合广义二次互相关(GSCC:Generalized Second Cross-Corr...  相似文献   

11.
基于VMD和FFT的变切深侧铣颤振特征提取方法   总被引:1,自引:0,他引:1  
针对铣削过程中颤振频带不明显的问题,采用变分模态分解(VMD)和快速傅里叶变换(FFT)相结合的方法来提取颤振频带,为进一步提取颤振特征值奠定基础.为获得包含颤振频率的频带,采用变切深侧铣薄壁件实验获取铣削力信号.提出结合FFT频谱来选择VMD中模态个数的方法,并采用此方法对仿真信号和实验信号进行颤振频带提取,结果表明VMD和FFT相结合的方法能有效提取铣削颤振频带.  相似文献   

12.
多输入多输出频域模态识别算法的探讨   总被引:2,自引:0,他引:2  
在应用多输入多输出频域正交多项式方法进行模态参数识别时,发现其存在一些不完善之处:1)识别振型需对重根单根情况分别作出判断和计算;2)在分析频带内系统存在重根重数与输入个数相同时,理论上振型无法识别,实际应用时识别结果有较大误差。对此进行了深入探讨,从理论上论证了出现上述问题的原因:识别过程中对矩阵进行奇异值分解,在存在重数与输入个数相同的重根时,此矩阵数值小,信噪比低,因此识别精度差。针对这些问题,对原算法进行了修正,使振型识别精度得到提高。算例与试验验证证明了所做的讨论和修正是正确的、有效的。  相似文献   

13.
针对现场采集的滚动轴承信号易受噪声影响而使微弱故障特征难以提取的问题,基于灰狼优化算法(GWO)、变分模态分解(VMD)和卷积神经网络(CNN),提出了一种滚动轴承故障诊断的新方法.首先,利用GWO优化VMD实现其分解层数及二次惩罚因子2个重要参数的自适应选择;其次,提出有效加权相关稀疏度指标(EWCS),并以此筛选VMD分解的有效本征模态函数(IMF);最后,使用GWO优化CNN参数,并采用2层卷积模块的CNN进行识别分类.基于所提方法,对滚动轴承4种不同运行状态的样本进行了分类识别,并与其他几种诊断方法进行比较.结果表明,该方法用于滚动轴承故障诊断是可行的,且具有更高的分类准确率.  相似文献   

14.
15.
针对传统轴承故障预警实时性较差、故障特征提取准确性影响预警效果的问题,将语音端点识别思想进行迁移,采用谱熵梅尔积特征的双门限法实时追踪故障起始点.为克服变分模态分解(variational mode decomposition,VMD)参数选取不当和端点效应对提取效果造成的影响,提出能量差网格搜索法对VMD进行参数寻优,并用支持向量回归机对端点效应进行抑制,结合多尺度加权排列熵在检测振动信号随机性方面的优势,充分发挥VMD对信号的重构能力,对起始点后的故障段进行特征捕捉.通过实际轴承故障信号的实验及数据分析,验证了该方法在轴承故障预警中的有效性.   相似文献   

16.
基于振动分析的齿轮故障检测已被证明在故障识别中是有效的,但对表征早期磨损的振动信号的提取和识别仍没有得到很好的解决.本文提出一种基于频谱相关性分析的变分模态分解(VMD)和核支持向量机(SVM)相结合的齿轮早期磨损诊断方法,对能够揭示早期磨损状态的微弱齿轮振动信号采用近似完全重构的准则来初始化模式数,并采用信号功率谱密度最大值对应的频率初始化VMD方法的中心频率,用以有效提取齿轮磨损信息,进而结合核支持向量机进行齿轮的早期磨损诊断.实验结果表明,所提方法可有效克服背景噪声大无法预设模式数的问题,对噪声具有更好的鲁棒性,诊断准确率达到94.4%,可为齿轮早期磨损检测提供解决方法.  相似文献   

17.
为了解决用户用电负荷曲线数据维度高、特征提取困难以及序列存在信号模态混叠的问题,本文提出使用变分模态分解(variational mode decomposition,VMD)和改进基于时空网络的变分自编码器(variational auto-encoders,VAE)对电力负荷曲线进行特征提取。通过模态分解得到信号的固有模态,对模态重构得到时序特征较明显的序列信号。再通过长短期记忆网络(long short-term memory network,LSTM)和卷积网络(convolutional neural networks,CNN)组成的时空变分自编码器进行潜在特征提取,并构建网络分类器来联合损失优化自编码器模型。最后使用Minibatchkmeans算法聚类并计算聚类中心。使用UCI数据集中葡萄牙居民用电量作为实验数据,通过实验结果表明经模态分解后通过降维再聚类的算法在戴维斯丁堡指数(Davies-Bouldin Index,DBI)和轮廓系数(Silhouette Coefficient,SC)上表现出较好效果。  相似文献   

18.
针对非连续、非平稳语音信号中含有噪声的问题,提出一种基于参数优化的变分模态分解去噪算法.首先,利用灰狼优化算法搜寻变分模态分解算法的最优分解参数组合分解模态数K和惩罚因子α,通过使用获得的参数组合分解语音信号以获得K个特征模态函数分量IM F;其次,利用相关系数选择有效模态分量,并用小波阈值处理无效模态分量;最后,重构...  相似文献   

19.
20.
提出一种基于变分模态分解(VMD)与归一化峭度的钢管混凝土柱内部脱空缺陷识别方法.首先,采用VMD分解响应信号;然后,选取加权峭度值大于平均值的模态分量作为有效分量并进行信号重构;对重构后的信号求取Teager能量算子(TEO)并进行快速傅里叶变换(FFT);最后,对经FFT处理的TEO值进行归一化峭度求解.通过数值算例和动力试验对文中方法的有效性和准确性进行验证.研究结果表明:文中方法对钢管混凝土柱内部损伤位置的识别效果较好,且不依赖于原始未损工况的基准信息.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号