首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
设计了一种应用于锂离子电池管理芯片的时钟产生电路.针对应用要求,设计了一个环形振荡器,分析了影响振荡频率精度、输出波形及噪声的因素,并设计了一个无电阻的亚阈值电流偏置电路.电路采用0.6μm UMC数字电路工艺实现.Hspice模拟结果表明:振荡器的输出标准频率为1.975 kHz;在各种工艺极限情况下,温度为-40~85℃,电源电压1.5~8 V时,振荡频率在1~3 kHz间,满足时钟精度要求.典型情况下,该时钟产生电路的电流消耗仅为340~375nA.  相似文献   

2.
介绍了一种适合于高速模数转换器(ADCs)的预放大-锁存(preamplifier-latch)CMOS比较器.此电路结构包括一个预放大器、锁存比较器和输出缓冲器.在预放大器和正反馈锁存比较器之间加入分离电路,以此来减少回扫(kickback)噪声对电路的影响.采用0.35 μm标准CMOS工艺库,在Cadence环境下进行仿真,该比较器在时钟频率为500 MHz,采样频率为40 MHz的时候,可以达到30 μV的精度,功耗大约为0.6 mW.  相似文献   

3.
传统的修调方案是通过改变电阻反馈网络的反馈系数来对系统的输出电压进行修调,这种针对于特定输出电压下的反馈电阻修调的方法无法保证配置不同输出电压时的精度. 针对上述问题,本文通过分析环路的工作特点,从固定工作点的误差放大器入手,提出基于动态修调误差放大器电流的高精度Buck - Boost转换器设计方法. 基于0.18 μm BCD工艺对提出的方法进行了具体电路设计与物理实现验证.结果表明,修调电流可以将输出电压±40 mV的输出电压误差降低到±1.83 mV,输出电压精度可以达到0.045 7 %;在输出电压误差满足≤5 mV时,满修调时可实现最大误差62.83 mV的修调.相较于传统结构,修调电压的精度受PVT变化影响较小,极大地改善了系统的输出精度,该方法已在一款Buck - Boost型转换器中得到成功应用.   相似文献   

4.
面向高速串行接口应用,设计一款低噪声、快速锁定的高性能锁相环电路,作为5 Gbit· s-1数据率的SerDes发射芯片的时钟源。该设计通过锁存RESET方式增加延迟时间,以减小鉴频鉴相器的死区效应,降低锁相环整体电路的杂散;其压控振荡器采用4 bit二进制开关电容的方法,将输出频率划分为16个子频带,以获得较大的输出频率范围,同时又不增加压控振荡器的增益;在SMIC 55 nm工艺下完成锁相环电路版图设计,核心芯片面积为054 mm2。后仿真结果表明:输出频率覆盖46~56 GHz,1 MHz频偏处的相位噪声在-110 dBc·Hz-1 附近。测试结果显示,RMS 抖动和峰峰值抖动分别为287 ps和134 ps,整体电路功耗为37 mW。  相似文献   

5.
采用中芯国际180 nm混合信号工艺,设计了一种新型低压低功耗环形振荡器.基于反馈理论,采用放大器完成从电源电压到环振工作电压的降压稳压转换,实现环振工作电压稳定性优化,同时降低其功耗;环振输出经幅度变换电路,实现高摆幅振荡信号输出;振荡器工作频率电流受控,抑制了电源噪声,降低了电源电压波动对输出频率的影响.结果表明,1 V电源电压下,输出频率2.737 MHz,功耗约0.8μW,1 MHz频点处相位噪声-108.7 dB;0.9~2.1 V电压范围内,输出频率波动小于0.23%,适于无源芯片设计.  相似文献   

6.
针对高速(Gb/s)串行数据通信应用,提出了一种混合结构的高速时钟数据恢复电路.该电路结构结合鉴频器和半速率二进制鉴相器,实现了频率锁定环路和相位恢复环路的同时工作.电路采用1.8 V,0.18μmCMOS工艺流片验证,面积约0.5 mm2,测试结果显示在2 Gb/s伪随机数序列输入情况下,电路能正确恢复出时钟和数据,核心功耗约为53.6 mW,输出驱动电路功耗约64.5 mW,恢复出的时钟抖动峰峰值为45 ps,均方根抖动为9.636 ps.  相似文献   

7.
针对在物联网设备中使用的电阻电容(RC)张弛振荡器低功耗低温漂的需求,通过将RC张弛振荡器中的参考电压产生电路和自偏置电流产生电路复合使用,简化电路结构,减小供电电压和偏置电流,降低电路的功耗.采用水平级联的共栅共源结构、反相器链及时钟电压自举结构,减少温度变化对延时及振荡频率的影响.采用串并联电阻网络减少因电阻工艺偏差导致的影响,并将该电阻网络配置成正温度特性,以平衡RC时间常数和比较器延时的温度依赖性,提高振荡频率的温度稳定性.仿真结果表明:本文RC张弛振荡器的振荡频率为1.2 kHz,功耗和温漂系数分别为1.351 nW和139×10-6/℃,与典型RC张弛振荡器相比,其功耗和温漂性能均有显著的提升.  相似文献   

8.
提出一种高速低功耗动态锁存比较器,电路包含预放大器、锁存比较器和SR锁存器3部分.采用一种新的锁存比较器复位电路,该电路仅由一个P沟道金属氧化物半导体(PMOS)管构成,实现电荷的再利用,减小了延迟,降低了功耗.SR锁存器输入端口的寄生电容为锁存比较器的负载电容,对SR锁存器的输入端口进行改进,避免由于锁存比较器的负载电容失配导致的输入失调电压偏移的问题.电路采用TSMC 0.18μm互补金属氧化物半导体(CMOS)工艺实现.结果表明:电源电压为1.8V,时钟频率为1GHz时,比较器精度达0.3mV;最大输入失调电压为8mV,功耗为0.2mW;该比较器具有电路简单易实现、功耗低的特点.  相似文献   

9.
为了降低传统增量型Σ-ΔADC在同精度情况下的量化时钟周期数,提高转换速率,提出了1种采用粗细量化的2步式增量放大型ADC.该ADC采用SAR ADC先进行6位粗量化,再采用增量型Σ-ΔADC进行8位高精度位的细量化,通过数字码拼接完成最终量化结果.同时引入了1种增益自举C类反相器技术,有效地降低了供电电压和整体功耗.该ADC使用0.18μm标准CMOS工艺进行了电路实现,在1.2 V供电电压,1 MHz采样频率、10 k S/s的转换速率的情况下,达到了81.26 d B的信噪失真比(SNDR)和13.21位的有效位数(ENOB),最大积分非线性为0.8 LSB.并且该ADC的整体功耗为197μW,可用于低电压低功耗的仪器测量和传感器等领域.  相似文献   

10.
基于0.18μm BCD工艺,设计了一种新颖的低温漂高电源抑制比(PSRR)的带隙基准源电路。基准核心电路采用自偏置结构,简化了电路的设计。在不显著增加电路功耗与面积的前提下,通过引入预调节电路极大地提高了电路的PSRR。基准源输出采用负反馈结构,进一步提升了PSRR。Hspice软件仿真结果表明:在-40~150℃温度范围变化时,基准输出电压变化为283μV,温度系数仅为1.18×10-6(ppm)/℃;基准的稳定输出电压为1.257 V;电源电压在3~6 V范围变化时,线性调整率为0.082 m V/V;5 V电源电压下,低频时电源电压抑制比为130 d B,在100 k Hz时也能高达65 d B。电路整体功耗为0.065 m W,版图面积为63μm×72μm。  相似文献   

11.
恒定、匹配的大电流输出电荷泵电路   总被引:1,自引:0,他引:1  
用TSMC 0.18μm CMOS工艺设计了一种应用于5 GHz锁相环型频率合成器中的电荷泵电路.该电路运用单位增益运放电路和自偏置共源共栅电流源电路实现了充放电流的高度匹配.充分利用单位增益运放电路减小电荷泵输出端的电荷共享现象,使电荷泵电路结构较简单并减小了功耗.Spectre后仿真表明,在电源1.8 V、输出电压0.5-1.3 V,充放电流失配率小于0.8%,电流绝对值偏移率小于0.6%,最大功耗8.53 mW.  相似文献   

12.
提出了一种用于低压差稳压器的过流保护电路,该过流保护电路基于SMIC 180 nm CMOS工艺,采用1.8V供电电源,在不影响原有LDO功率管管压降的同时,提高了输出电流的采样精度,限制LDO功率管的最大输出电流及LDO输出电压过低时降低功率管的电流输出。达到过流限后,负载电流与功耗下降比成正相关,负载电流越大,整体功耗下降越多。随着负载电流的增加,至触发电流折返之前,功耗下降比由0%开始逐渐提高至20%~30%;电流开始折返后,功耗下降比由20%~30%开始逐渐提高至99%。在负载电流未达到电流折返的临界点时,LDO瞬态性能不受影响;在负载电流达到电流折返临界点时,输出电压下降约500 m V,但其余瞬态性能不受影响。  相似文献   

13.
设计了一款适用于单芯片集成真空传感器的10位SAR型A/D转换器.轨至轨比较器通过并联两个互补的子比较器实现.信号采样时,比较器进行失调消除,提高电路的转换精度.电路采用0.5μm2P3M标准CMOS工艺制作.系统时钟频率为20MHz,输入电压范围为0~3V.在1.25MS/s采样率和4.6kHz信号输入频率下,电路的信噪比为56.4dB,无杂散动态范围为69.2dB.芯片面积为2mm2.3V电源电压供电时,功耗为3.1mW.其性能已达到高线性度和低功耗的设计要求.  相似文献   

14.
本文对传统正交压控振荡器(QVCO)耦合方式进行了改进,提出了在耦合管的源端引入相移网络的方法,从而改善了QVCO电路的相位噪声性能以及减小输出相位失配,并依此设计了一个低相位噪声,输出相位关系稳定的宽带正交压控振荡器.QVCO电路采用TSMC 0.13 μm CMOS工艺进行设计,输出频率范围为3.4~5.48 GHz,即调谐范围达46.8%.测试表明,输出频率4.2 GHz时在频偏1 MHz处,相位噪声为-120 dBc/Hz.在整个输出频率范围内电路FOM值介于179.5~185.2 dB,电路功耗为7.68~18mW.  相似文献   

15.
设计了一种适用于10位100MHz的流水线模数转换器的采样保持电路.利用SMIC0.13μmCMOS工艺,设计了一个直流增益为87.6dB的全差分自举增益放大器,其功耗仅7.2mW,且达到0.05%精度的响应时间小于4ns.在采样时钟频率为100MHz,输入信号频率为10MHz时,该采样保持电路的无杂散动态范围(SFDR)为80.7dB.  相似文献   

16.
设计了一种基于外接泵电容的1.33倍新型电荷泵电路.电路采用了预启动和衬底电位选择结构,并利用三相时钟信号方式控制电荷泵的工作状态.采用0.5μmCMOS工艺模型利用Cadence的Specter工具进行了仿真.结果表明:所设计的电路提高了芯片的启动速度,有效防止了闩锁现象的产生;在典型的3.3 V输入电压下,电荷泵效率为93.25%.与传统电荷泵相比优势在于输出电压低,有效地降低了无用功耗.1.33倍电荷泵必将具有广泛地应用前景.  相似文献   

17.
对NMOS(N-metal oxide semiconductor)管交叉耦合逻辑(NMOS-transistor cross coupling logic,NCCL)的能量回收电路进行了研究,PMOS(P-metal oxide semiconductor)管作为输入管来降低纳米CMOS工艺中栅氧化层上的漏电流以减小功耗;在此基础上实现了绝热JK触发器电路.在90nm CMOS BSIM3工艺模型下,用HSPICE对NCCL反相器及其JK触发器进行了模拟分析,结果表明NCCL反相器的工作频率可达到1GHz;与ECRL(efficient charge recovery logic)反相器相比,当负载电容、时钟频率和电源电压中某一参数变化时,NCCL的功耗都出现不同程度的降低;在相同的工作条件下NCCL JK触发器的功耗约为ECRL的50%.  相似文献   

18.
设计1种可实现自给基准参考电压的前置稳压器.提出1种新的电路结构,该电路结构由前置稳压电路和基准参考电压产生电路组成.前置稳压电路输出稳定电压为芯片其他模块提供稳定电压,基准参考电压产生电路输出与电源无关的基准参考电压,作为前置稳压电路的参考电压,通过反馈机制,实现稳定输出,从而为芯片在供电电压波动较大的情况下,提供稳定电压.采用BCD工艺模型对电路进行仿真,仿真结果证明此种稳压器的线性调整率为0.008%,负载电流由0上升至100 m A时,负载调整率是1.18%,当频率为10 k Hz时,电源纹波抑制比为-58 d B,频率为40 k Hz时,抑制比为-29.7 d B.  相似文献   

19.
为解决传统双通道构架仅适用于低速模拟数字转换电路(Analog-to-Digital Converter,简称ADC)的问题,通过取消数字校准电路,去除信号通道中用于数字校准开关的方式,采用台湾积体电路制造公司(TSMC)0.18μm CMOS工艺,用双通道流水线构架实现了高速高精度ADC,确保ADC达到12位信号转换精度的同时,信号转换速度达到了200 Ms/s.通过测试,该电路在模拟输入信号为10 MHz,差分振幅为1.25 V,电源电压为1.8 V,信号采样频率200 Ms/s条件下获得信噪失真比为64.7 d B,无杂散动态范围为86.3 d B,电路整体功耗为356 m W,测试结果证实该设计在降低模数转换电路设计难度的同时节省了功耗.  相似文献   

20.
以传统的Wien bridge电压模振荡器为原型,根据网络与其伴随网络传输函数相同的特点,用伴随运算放大器(AOA)和分立电阻及电容设计出Wien bridge电流模式振荡器,该电路不仅具有速度高、频率高、电压低及功耗小等电流模电路的特点,而且振荡频率和输出幅度可独立的调谐;振荡频率和输出幅度与负载大小无关;振荡频率受寄生电容影响小,输出频率的精确度、稳定度高,电路比较简单,既适合分立电路使用,亦适合VLSI单片集成。计算机仿真证明该设计正确.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号