首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 31 毫秒
1.
R为单位圆Δ上的亚纯函数族,a为非零有限复数,k为一正整数,若对任意f∈R,没有零点,L(f)=f(k)+ak-1fk-1+…+a1f′+a0f为f的微分多项式,且有f.L(f)≠a,则R在Δ区域上正规.  相似文献   

2.
给出了一个一般性的正规定则,设F为区域D上的一个亚纯函数族,H(不衡等于)0,a0+a1,…am-1为区域D上的全纯函数,如果对于任意的f∈F,f的极点重数≥2,f的零点重数≥m+2,且L(f)(z)=f^(m)(z)+am-1(z)f(m-1)(z)+…+a1(z)f′(z)+a0(z)f(z)≠h(z) z∈D 则F在区域D上正规。  相似文献   

3.
设k是正整数,F是开平面上的区域D的亚纯函数族,F中每个函数f(z)∈F的零点重数至少为k+1,极点重数至少为3,而a(z)为D上的全纯函数,a(z)不恒等于0。对于F中的每个函数f(z)∈F,若f(z)的全纯系数的线性微分多项式L(f)满足L(f)≠a(z),z∈D,则F在D上正规。  相似文献   

4.
设F是域D内的亚纯函数族,k,n(n≥k+2)是正整数.设a≠0是有限复数.如果对任意f∈F,f的零点重级至少为n,且对F中的任何函数对f与g满足G(f)与G(g)在D内分担b,其中G(f)=P(f(k))+H(f)是f的微分多项式,那么F在D内正规.  相似文献   

5.
主要证明了定理:设F是单位圆盘△上的亚纯函数族,F中的任一函数f的极点是重级的,零点重级至少为m 1,m是正整数,h(z)≠0,a0,a1,…,am-1都是D上的全纯函数.如果对任一f∈F,L(f)(z)=f(m)(z) am-1(z)f(m-1)(z) … a1(z)f′(z) a0(z)f(z)≠h(z),z∈D,则F在D上正规.  相似文献   

6.
设F是区域D内的一族亚纯函数,k,m,q是正整数,P(ω)=ωq+aq-1(z)ωq-1+…+a1(z)ω是一多项式,H(f,f′,…,f(k))是满足γH*0的微分多项式,a(z),b(z),c(z)是区域D内的解析函数,且a(z)≠b(z),c(z)≠0.若对于任意的f∈F,f的零点的重数至少是k+1,且有(1)P(f(k)(z))+H(f,f′,…,f(k))=a(z)时,f(z)=0;(2)P(f(k)(z))+H(f,f′,…,f(k))=b(z)时,f(z)=c(z),则F在D内正规.  相似文献   

7.
设F为区域D上的亚纯函数族,k、m、q是正整数,p(w)=w~q a_(q-1)(z)w~(q-1) … a_1(z)w是多项式,H(f,f,…f~(k))是满足r_H~*>0的微分多项式,a(z)、b(z)、c(z)是D上的解析函数,且a(z)≠b(z),6(z)≠0,c(z)≠0,如果对任意的f∈Ff的零点重数至少为K 1,p(f~(k)) H(ff,…f~(k))=a(z)(?)f(z)=0,p(f~(k)) H(f,f…f~(k))= b(z)(?)f(z)=c(z),则F在D上正规。  相似文献   

8.
研究了亚纯函数涉及微分多项式的正规族,证明了:设F为单位圆盘△上的一族亚纯函数,k,n,g为正整数,P(w)=wq+aq-1(z)wq-1+…+a1(z)w是多项式.并且设H(f,f',…,f(k))是不含常数项的微分多项式,a,b为任意的2个非零复数,若对任一f∈ F,f的零点重数≥k+1,极点重数≥2,并且p(f(k))+H(f,f',…,f(k))=a→f(z)=b,则F在单位圆盘△上正规.  相似文献   

9.
涉及微分多项式的亚纯函数正规性   总被引:3,自引:3,他引:0       下载免费PDF全文
研究了涉及微分多项式的亚纯函数的正规性.继承Schwick的思想将正规族与分担值联系起来,对一族亚纯函数中函数与该函数微分多项式分担值的情况进行研究,得出亚纯函数的正规性.已知定理:设F为区域D上的全纯函数族,k为正整数,a,b,c和d为有穷复数,b≠0,c≠0且b≠a,若对f∈F,f-d的零点重级至少为k,f=0f(k)=a且f(k)=bf=c. 则F在D上正规.本文将这个定理推广到亚纯函数情形,并且将f(k)用f的微分多项式来代替,结论仍成立.  相似文献   

10.
利用分担值的思想证明了:设n(n≥3),a≠0、b是两个有穷复数,D是复平面C的一个区域,F是区域D中的一族亚纯函数,其中每个函数极点的重级至少是3,零点的重级至少是2.若对于F中的任意两个函数f、g,f’-afn与g’-agn在D内分担b,则F在D内正规.  相似文献   

11.
给出了一个一般性的正规定则,改进了顾永兴[1]和朱经浩[2]的结果. 设F为区域D上的一个亚纯函数族,h≠0,a0,a1,…,am-1为区域D上的全纯函数。如果对于任意的f∈F,f的零点重级≥m+3并且f(m)(z)+am-1(z)f(m-1)(z)+…+a1(z)f′(z)+a0(z)f(z)≠h(z) z∈D,则F在区域D上正规.  相似文献   

12.
研究了亚纯函数族的正规性,推广了涉及导数的亚纯函数族的正规定则,得到了涉及微分多项式的亚纯函数正规族的一个结果.即:设F为单位圆盘上的一族亚纯函数,a为任一非零有穷复数,k为一正整数.若对任意的f(z)∈F,f(z)的零点重级至少为k+1,极点重级至少为2,且L(f)(z)和f(z)IM分担a,则F在单位圆盘上正规.  相似文献   

13.
零点位于直线上的亚纯函数的正规定则   总被引:4,自引:4,他引:0       下载免费PDF全文
讨论了亚纯函数的零点分布在直线上的亚纯函数的正规性,得到:设F是定义在单位圆盘D上的亚纯函数族,若存在M≥0,使得对于F中任意的亚纯函数f满足f的零点分布在一直线上,其极点重级m≥3(m∈Z~+),且f′(z)不取1,当f取值0时,f′(x)的模不大于M,则F在区域D内是正规的.  相似文献   

14.
利用亚纯函数的值分布理论,对分担值的Lahiri型正规性进行研究.得到了1个正规定理,推广了先前的一些结果.  相似文献   

15.
运用Nevanlinna 值分布理论和正规族理论研究了亚纯函数微分单项式分担一个值的正规族问题, 得到了几个正规定则。  相似文献   

16.
设f(z)为单位圆盘△上的一个亚纯函数,a,b为互相判别的有限复数,当f≠0,并且f(z)与(f)(z)分担集合S={a,b},则f(z)为单位圆盘△上的一个正规函数  相似文献   

17.
主要得到了以下结果:设是一族平面区域D内的亚纯函数,a,b为有穷非零复数,k为大于1的整数.如果对于F中的任一元素f,满足f-a的零点重数至少为k,f(z)=a■f(k)(z)=a,f(k)(z)=b■f(k+1)(z)=b,则当k≥3时,F为正规族,k=2并且a/b≠4时,F为正规族.并且给出了1个例子说明条件a/b≠4是必要的.  相似文献   

18.
证明了亚纯函数的一个正规定则:设F是区域D 内的一族亚纯函数,a≠0,b 是2个有穷复数,m,k,n是3个正整数,且n≥ m+1.如果对任意的f∈F,f的零点重级至少为k+1,且fm+a(f(k))n≠ b,那么F在D 内正规.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号