共查询到18条相似文献,搜索用时 31 毫秒
1.
R为单位圆Δ上的亚纯函数族,a为非零有限复数,k为一正整数,若对任意f∈R,没有零点,L(f)=f(k)+ak-1fk-1+…+a1f′+a0f为f的微分多项式,且有f.L(f)≠a,则R在Δ区域上正规. 相似文献
2.
王晓晶 《西南师范大学学报(自然科学版)》2005,30(5):805-808
给出了一个一般性的正规定则,设F为区域D上的一个亚纯函数族,H(不衡等于)0,a0+a1,…am-1为区域D上的全纯函数,如果对于任意的f∈F,f的极点重数≥2,f的零点重数≥m+2,且L(f)(z)=f^(m)(z)+am-1(z)f(m-1)(z)+…+a1(z)f′(z)+a0(z)f(z)≠h(z) z∈D 则F在区域D上正规。 相似文献
3.
王继宏 《西南科技大学学报》2010,25(1):89-93
设k是正整数,F是开平面上的区域D的亚纯函数族,F中每个函数f(z)∈F的零点重数至少为k+1,极点重数至少为3,而a(z)为D上的全纯函数,a(z)不恒等于0。对于F中的每个函数f(z)∈F,若f(z)的全纯系数的线性微分多项式L(f)满足L(f)≠a(z),z∈D,则F在D上正规。 相似文献
4.
设F是域D内的亚纯函数族,k,n(n≥k+2)是正整数.设a≠0是有限复数.如果对任意f∈F,f的零点重级至少为n,且对F中的任何函数对f与g满足G(f)与G(g)在D内分担b,其中G(f)=P(f(k))+H(f)是f的微分多项式,那么F在D内正规. 相似文献
5.
章文华 《内蒙古大学学报(自然科学版)》2006,37(2):121-124
主要证明了定理:设F是单位圆盘△上的亚纯函数族,F中的任一函数f的极点是重级的,零点重级至少为m 1,m是正整数,h(z)≠0,a0,a1,…,am-1都是D上的全纯函数.如果对任一f∈F,L(f)(z)=f(m)(z) am-1(z)f(m-1)(z) … a1(z)f′(z) a0(z)f(z)≠h(z),z∈D,则F在D上正规. 相似文献
6.
设F是区域D内的一族亚纯函数,k,m,q是正整数,P(ω)=ωq+aq-1(z)ωq-1+…+a1(z)ω是一多项式,H(f,f′,…,f(k))是满足γH*0的微分多项式,a(z),b(z),c(z)是区域D内的解析函数,且a(z)≠b(z),c(z)≠0.若对于任意的f∈F,f的零点的重数至少是k+1,且有(1)P(f(k)(z))+H(f,f′,…,f(k))=a(z)时,f(z)=0;(2)P(f(k)(z))+H(f,f′,…,f(k))=b(z)时,f(z)=c(z),则F在D内正规. 相似文献
7.
夏玉玲 《重庆师范大学学报(自然科学版)》2007,24(2):29-31
设F为区域D上的亚纯函数族,k、m、q是正整数,p(w)=w~q a_(q-1)(z)w~(q-1) … a_1(z)w是多项式,H(f,f,…f~(k))是满足r_H~*>0的微分多项式,a(z)、b(z)、c(z)是D上的解析函数,且a(z)≠b(z),6(z)≠0,c(z)≠0,如果对任意的f∈Ff的零点重数至少为K 1,p(f~(k)) H(ff,…f~(k))=a(z)(?)f(z)=0,p(f~(k)) H(f,f…f~(k))= b(z)(?)f(z)=c(z),则F在D上正规。 相似文献
8.
尚华 《重庆邮电大学学报(自然科学版)》2009,21(6):831-833
研究了亚纯函数涉及微分多项式的正规族,证明了:设F为单位圆盘△上的一族亚纯函数,k,n,g为正整数,P(w)=wq+aq-1(z)wq-1+…+a1(z)w是多项式.并且设H(f,f',…,f(k))是不含常数项的微分多项式,a,b为任意的2个非零复数,若对任一f∈ F,f的零点重数≥k+1,极点重数≥2,并且p(f(k))+H(f,f',…,f(k))=a→f(z)=b,则F在单位圆盘△上正规. 相似文献
9.
研究了涉及微分多项式的亚纯函数的正规性.继承Schwick的思想将正规族与分担值联系起来,对一族亚纯函数中函数与该函数微分多项式分担值的情况进行研究,得出亚纯函数的正规性.已知定理:设F为区域D上的全纯函数族,k为正整数,a,b,c和d为有穷复数,b≠0,c≠0且b≠a,若对f∈F,f-d的零点重级至少为k,f=0f(k)=a且f(k)=bf=c. 则F在D上正规.本文将这个定理推广到亚纯函数情形,并且将f(k)用f的微分多项式来代替,结论仍成立. 相似文献
10.
利用分担值的思想证明了:设n(n≥3),a≠0、b是两个有穷复数,D是复平面C的一个区域,F是区域D中的一族亚纯函数,其中每个函数极点的重级至少是3,零点的重级至少是2.若对于F中的任意两个函数f、g,f’-afn与g’-agn在D内分担b,则F在D内正规. 相似文献
11.
给出了一个一般性的正规定则,改进了顾永兴[1]和朱经浩[2]的结果. 设F为区域D上的一个亚纯函数族,h≠0,a0,a1,…,am-1为区域D上的全纯函数。如果对于任意的f∈F,f的零点重级≥m+3并且f(m)(z)+am-1(z)f(m-1)(z)+…+a1(z)f′(z)+a0(z)f(z)≠h(z) z∈D,则F在区域D上正规. 相似文献
12.
张海侠 《信阳师范学院学报(自然科学版)》2012,25(3):289-291
研究了亚纯函数族的正规性,推广了涉及导数的亚纯函数族的正规定则,得到了涉及微分多项式的亚纯函数正规族的一个结果.即:设F为单位圆盘上的一族亚纯函数,a为任一非零有穷复数,k为一正整数.若对任意的f(z)∈F,f(z)的零点重级至少为k+1,极点重级至少为2,且L(f)(z)和f(z)IM分担a,则F在单位圆盘上正规. 相似文献
13.
讨论了亚纯函数的零点分布在直线上的亚纯函数的正规性,得到:设F是定义在单位圆盘D上的亚纯函数族,若存在M≥0,使得对于F中任意的亚纯函数f满足f的零点分布在一直线上,其极点重级m≥3(m∈Z~+),且f′(z)不取1,当f取值0时,f′(x)的模不大于M,则F在区域D内是正规的. 相似文献
14.
利用亚纯函数的值分布理论,对分担值的Lahiri型正规性进行研究.得到了1个正规定理,推广了先前的一些结果. 相似文献
15.
16.
设f(z)为单位圆盘△上的一个亚纯函数,a,b为互相判别的有限复数,当f≠0,并且f(z)与(f)(z)分担集合S={a,b},则f(z)为单位圆盘△上的一个正规函数 相似文献
17.
主要得到了以下结果:设是一族平面区域D内的亚纯函数,a,b为有穷非零复数,k为大于1的整数.如果对于F中的任一元素f,满足f-a的零点重数至少为k,f(z)=a■f(k)(z)=a,f(k)(z)=b■f(k+1)(z)=b,则当k≥3时,F为正规族,k=2并且a/b≠4时,F为正规族.并且给出了1个例子说明条件a/b≠4是必要的. 相似文献
18.
证明了亚纯函数的一个正规定则:设F是区域D 内的一族亚纯函数,a≠0,b 是2个有穷复数,m,k,n是3个正整数,且n≥ m+1.如果对任意的f∈F,f的零点重级至少为k+1,且fm+a(f(k))n≠ b,那么F在D 内正规. 相似文献