首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Our genome-wide association study of celiac disease previously identified risk variants in the IL2-IL21 region. To identify additional risk variants, we genotyped 1,020 of the most strongly associated non-HLA markers in an additional 1,643 cases and 3,406 controls. Through joint analysis including the genome-wide association study data (767 cases, 1,422 controls), we identified seven previously unknown risk regions (P < 5 x 10(-7)). Six regions harbor genes controlling immune responses, including CCR3, IL12A, IL18RAP, RGS1, SH2B3 (nsSNP rs3184504) and TAGAP. Whole-blood IL18RAP mRNA expression correlated with IL18RAP genotype. Type 1 diabetes and celiac disease share HLA-DQ, IL2-IL21, CCR3 and SH2B3 risk regions. Thus, this extensive genome-wide association follow-up study has identified additional celiac disease risk variants in relevant biological pathways.  相似文献   

2.
Novel dominant mutations in Saccharomyces cerevisiae MSH6   总被引:2,自引:0,他引:2  
Inherited mutations in the mismatch repair (MMR) genes MSH2 and MLH1 are found in most hereditary nonpolyposis colon cancer (HNPCC) patients studied. Eukaryotic MMR uses two partially redundant mispair-recognition complexes, Msh2p-Msh6p and Msh2p-Msh3p (ref.2) Inactivation of MSH2 causes high rates of accumulation of both base-substitution and frameshift mutations. Mutations in MSH6 or MSH3 cause partial defects in MMR, with inactivation of MSH6 resulting in high rates of base-substitution mutations and low rates of frameshift mutations; inactivation of MSH3 results in low rates of frameshift mutations. These different mutator phenotypes provide an explanation for the observation that MSH2 mutations are common in HNPCC families, whereas mutations in MSH3 and MSH6 are rare. We have identified novel missense mutations in Saccharomyces cerevisiae MSH6 that appear to inactivate both Msh2p-Msh6p- and Msh2p-Msh3p-dependent MMR. Our work suggests that such mutations may underlie some cases of inherited cancer susceptibility similar to those caused by MSH2 mutations.  相似文献   

3.
4.
Weil CF  Kunze R 《Nature genetics》2000,26(2):187-190
Excision by transposons is associated with chromosome breaks; generally, host-cell proteins repair this damage, often introducing mutations. Many transposons also use host proteins in the transposition mechanism or in regulation. Transposition in systems lacking host factors that influence the behaviour of these transpositions is useful in determining what those factors are and how they work. In addition, features of transposition and regulation intrinsic to the element itself can be determined. Maize Activator/Dissociation (Ac/Ds) elements transpose in a wide variety of heterologous plants, but their characteristics in these other systems differ from those in maize, including their response to increasing genetic dosage and the types of repair products recovered following excision. Two Arabidopsis thaliana mutants (iae1 and iae2) show increased Ac transposition frequencies. These mutants, and the differences mentioned above, suggest the involvement of host proteins in Ac/Ds activity and potential differences between these proteins among plant species. Here we report that Ac/Ds elements, members of the hAT (hobo, Ac, Tam3) superfamily, transpose in the yeast Saccharomyces cerevisiae, an organism lacking class II ('cut and paste') transposons. This demonstrates that plant-specific proteins are not essential for Ac/Ds transposition. The yeast system is valuable for dissecting the Ac/Ds transposition mechanism and identifying host factors that can influence transposition and the repair of DNA damage induced by Ac/Ds. Mutations caused by Ds excision in yeast suggest formation of a DNA-hairpin intermediate, and reinsertions occur throughout the genome with a frequency similar to that in plants. The high proportion of Ac/Ds reinsertions also makes this system an in vivo mutagenesis and reverse genetics tool in yeast and, presumably, other eukaryotic systems.  相似文献   

5.
Inherited mutations of specific genes have elucidated the normal roles of the proteins they encode by relating specific mutations to particular phenotypes. But many potentially informative mutations in such genes are lethal early in development. Consequently, inherited mutations may not reflect all the functional roles of such proteins. Acquired, somatic defects should reflect a wider spectrum of mutations because they are not prone to negative selection in development. It has been difficult to identify such mutations so far, but microarray analysis provides a new opportunity to do so. Using this approach, we have shown that in individuals with myelodysplasia associated with alpha-thalassemia (ATMDS), somatic mutations of the gene encoding the chromatin remodeling factor ATRX cause an unexpectedly severe hematological phenotype compared with the wide spectrum of inherited mutations affecting this gene. These findings cast new light on this pleiotropic cofactor, which appears to be an essential component rather than a mere facilitator of globin gene expression.  相似文献   

6.
The Escherichia coli gene recQ was identified as a RecF recombination pathway gene. The gene SGS1, encoding the only RecQ-like DNA helicase in Saccharomyces cerevisiae, was identified by mutations that suppress the top3 slow-growth phenotype. Relatively little is known about the function of Sgs1p because single mutations in SGS1 do not generally cause strong phenotypes. Mutations in genes encoding RecQ-like DNA helicases such as the Bloom and Werner syndrome genes, BLM and WRN, have been suggested to cause increased genome instability. But the exact DNA metabolic defect that might underlie such genome instability has remained unclear. To better understand the cellular role of the RecQ-like DNA helicases, sgs1 mutations were analyzed for their effect on genome rearrangements. Mutations in SGS1 increased the rate of accumulating gross chromosomal rearrangements (GCRs), including translocations and deletions containing extended regions of imperfect homology at their breakpoints. sgs1 mutations also increased the rate of recombination between DNA sequences that had 91% sequence homology. Epistasis analysis showed that Sgs1p is redundant with DNA mismatch repair (MMR) for suppressing GCRs and for suppressing recombination between divergent DNA sequences. This suggests that defects in the suppression of rearrangements involving divergent, repeated sequences may underlie the genome instability seen in BLM and WRN patients and in cancer cases associated with defects in these genes.  相似文献   

7.
8.
Cancer progression is often associated with the accumulation of gross chromosomal rearrangements (GCRs), such as translocations, deletion of a chromosome arm, interstitial deletions or inversions. In many instances, GCRs inactivate tumour-suppressor genes or generate novel fusion proteins that initiate carcinogenesis. The mechanism underlying GCR formation appears to involve interactions between DNA sequences of little or no homology. We previously demonstrated that mutations in the gene encoding the largest subunit of the Saccharomyces cerevisiae single-stranded DNA binding protein (RFA1) increase microhomology-mediated GCR formation. To further our understanding of GCR formation, we have developed a novel mutator assay in S. cerevisiae that allows specific detection of such events. In this assay, the rate of GCR formation was increased 600-5, 000-fold by mutations in RFA1, RAD27, MRE11, XRS2 and RAD50, but was minimally affected by mutations in RAD51, RAD54, RAD57, YKU70, YKU80, LIG4 and POL30. Genetic analysis of these mutants suggested that at least three distinct pathways can suppress GCRs: two that suppress microhomology-mediated GCRs (RFA1 and RAD27) and one that suppresses non-homology-mediated GCRs (RAD50/MRE11/XRS2).  相似文献   

9.
Dandy-Walker malformation (DWM; OMIM #220200) is a common but poorly understood congenital cerebellar malformation in humans. Through physical mapping of 3q2 interstitial deletions in several individuals with DWM, we defined the first critical region associated with DWM, encompassing two adjacent Zinc finger in cerebellum genes, ZIC1 and ZIC4. Mice with a heterozygous deletion of these two linked genes have a phenotype that closely resembles DWM, providing a mouse model for this malformation.  相似文献   

10.
The Indiana kindred variant of Gerstmann-Str?ussler-Scheinker disease has amyloid plaques that contain prion protein (PrP), but is atypical because neurofibrillary tangles like those of Alzheimer disease are present. To map the position of the disease causing gene, we used three markers for linkage analyses. A missense mutation at codon 198 of the PrP gene (PRNP) is found in all definitely affected individuals and yields a maximum lod score of 6.37 (theta = 0). The disease also is concordant with the two other PRNP-region markers. These results demonstrate tight linkage of the disease-causing gene to PRNP and support the hypothesis that the codon 198 mutation is the cause of IK-GSS. Our studies also suggest that methionine/valine heterozygotes at PRNP codon 129 have a later age of onset of the disease than codon 129 valine/valine homozygotes.  相似文献   

11.
Leprosy, a chronic infectious disease caused by Mycobacterium leprae, affects an estimated 700,000 persons each year. Clinically, leprosy can be categorized as paucibacillary or multibacillary disease. These clinical forms develop in persons that are intrinsically susceptible to leprosy per se, that is, leprosy independent of its specific clinical manifestation. We report here on a genome-wide search for loci controlling susceptibility to leprosy per se in a panel of 86 families including 205 siblings affected with leprosy from Southern Vietnam. Using model-free linkage analysis, we found significant evidence for a susceptibility gene on chromosome region 6q25 (maximum likelihood binomial (MLB) lod score 4.31; P = 5 x 10(-6)). We confirmed this by family-based association analysis in an independent panel of 208 Vietnamese leprosy simplex families. Of seven microsatellite markers underlying the linkage peak, alleles of two markers (D6S1035 and D6S305) showed strong evidence for association with leprosy (P = 6.7 x 10(-4) and P = 5.9 x 10(-5), respectively).  相似文献   

12.
Autosomal dominant optic atrophy (ADOA) is the most prevalent hereditary optic neuropathy resulting in progressive loss of visual acuity, centrocoecal scotoma and bilateral temporal atrophy of the optic nerve with an onset within the first two decades of life. The predominant locus for this disorder (OPA1; MIM 165500) has been mapped to a 1.4-cM interval on chromosome 3q28-q29 flanked by markers D3S3669 and D3S3562 (ref. 3). We established a PAC contig covering the entire OPA1 candidate region of approximately 1 Mb and a sequence skimming approach allowed us to identify a gene encoding a polypeptide of 960 amino acids with homology to dynamin-related GTPases. The gene comprises 28 coding exons and spans more than 40 kb of genomic sequence. Upon sequence analysis, we identified mutations in seven independent families with ADOA. The mutations include missense and nonsense alterations, deletions and insertions, which all segregate with the disease in these families. Because most mutations probably represent null alleles, dominant inheritance of the disease may result from haploinsufficiency of OPA1. OPA1 is widely expressed and is most abundant in the retina. The presence of consensus signal peptide sequences suggests that the product of the gene OPA1 is targeted to mitochondria and may exert its function in mitochondrial biogenesis and stabilization of mitochondrial membrane integrity.  相似文献   

13.
14.
15.
Myelodysplastic syndromes (MDS) are hematopoietic stem cell disorders that often progress to chemotherapy-resistant secondary acute myeloid leukemia (sAML). We used whole-genome sequencing to perform an unbiased comprehensive screen to discover the somatic mutations in a sample from an individual with sAML and genotyped the loci containing these mutations in the matched MDS sample. Here we show that a missense mutation affecting the serine at codon 34 (Ser34) in U2AF1 was recurrently present in 13 out of 150 (8.7%) subjects with de novo MDS, and we found suggestive evidence of an increased risk of progression to sAML associated with this mutation. U2AF1 is a U2 auxiliary factor protein that recognizes the AG splice acceptor dinucleotide at the 3' end of introns, and the alterations in U2AF1 are located in highly conserved zinc fingers of this protein. Mutant U2AF1 promotes enhanced splicing and exon skipping in reporter assays in vitro. This previously unidentified, recurrent mutation in U2AF1 implicates altered pre-mRNA splicing as a potential mechanism for MDS pathogenesis.  相似文献   

16.
Congenital generalized lipodystrophy is an autosomal recessive disorder characterized by marked paucity of adipose tissue, extreme insulin resistance, hypertriglyceridemia, hepatic steatosis and early onset of diabetes. We report several different mutations of the gene (AGPAT2) encoding 1-acylglycerol-3-phosphate O-acyltransferase 2 in 20 affected individuals from 11 pedigrees of diverse ethnicities showing linkage to chromosome 9q34. The AGPAT2 enzyme catalyzes the acylation of lysophosphatidic acid to form phosphatidic acid, a key intermediate in the biosynthesis of triacylglycerol and glycerophospholipids. AGPAT2 mRNA is highly expressed in adipose tissue. We conclude that mutations in AGPAT2 may cause congenital generalized lipodystrophy by inhibiting triacylglycerol synthesis and storage in adipocytes.  相似文献   

17.
18.
19.
Human inherited cataract is both clinically diverse and genetically heterogeneous. Here we report the identification of the first mutations affecting the major intrinsic protein of the lens, MIP, encoded by the gene MIP on 12q14. MIP is a member of the aquaporin family of membrane-bound water channels. The mutations identified are predicted to disturb water flux across the lens cell membrane.  相似文献   

20.
B cells, alphabeta T cells and gammadelta T cells are conserved lymphocyte subtypes encoding their antigen receptors from somatically rearranged genes. alphabeta T cells undergo positive selection in the thymus by engagement of their T cell receptors (TCRs) with self-peptides presented by major histocompatibility complex molecules. The molecules that select gammadelta T cells are unknown. Vgamma5+Vdelta1+ cells comprise 90% of mouse epidermal gammadelta T cells. By mapping and genetic complementation using a strain showing loss of Vgamma5+Vdelta1+ cells due to a failure of thymic selection, we show that this defect is caused by mutation in Skint1, a newly identified gene expressed in thymus and skin that encodes a protein with immunoglobulin-like and transmembrane domains. Skint1 is the prototypic member of a rapidly evolving family of at least 11 genes in mouse, with greatest similarity to the butyrophilin genes. These findings define a new family of proteins mediating key epithelial-immune interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号