首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Metastatic potential as a heritable trait   总被引:2,自引:0,他引:2  
Threadgill DW 《Nature genetics》2005,37(10):1026-1027
  相似文献   

2.
Notch1 functions as a tumor suppressor in mouse skin   总被引:24,自引:0,他引:24  
Notch proteins are important in binary cell-fate decisions and inhibiting differentiation in many developmental systems, and aberrant Notch signaling is associated with tumorigenesis. The role of Notch signaling in mammalian skin is less well characterized and is mainly based on in vitro studies, which suggest that Notch signaling induces differentiation in mammalian skin. Conventional gene targeting is not applicable to establishing the role of Notch receptors or ligands in the skin because Notch1-/- embryos die during gestation. Therefore, we used a tissue-specific inducible gene-targeting approach to study the physiological role of the Notch1 receptor in the mouse epidermis and the corneal epithelium of adult mice. Unexpectedly, ablation of Notch1 results in epidermal and corneal hyperplasia followed by the development of skin tumors and facilitated chemical-induced skin carcinogenesis. Notch1 deficiency in skin and in primary keratinocytes results in increased and sustained expression of Gli2, causing the development of basal-cell carcinoma-like tumors. Furthermore, Notch1 inactivation in the epidermis results in derepressed beta-catenin signaling in cells that should normally undergo differentiation. Enhanced beta-catenin signaling can be reversed by re-introduction of a dominant active form of the Notch1 receptor. This leads to a reduction in the signaling-competent pool of beta-catenin, indicating that Notch1 can inhibit beta-catenin-mediated signaling. Our results indicate that Notch1 functions as a tumor-suppressor gene in mammalian skin.  相似文献   

3.
Gene expression as a drug discovery tool   总被引:1,自引:0,他引:1  
Evans WE  Guy RK 《Nature genetics》2004,36(3):214-215
  相似文献   

4.
Specific homeostatic mechanisms confer stability in innate immune responses, preventing injury or death from infection. Here we identify, from a screen of N-ethyl-N-nitrosourea-mutagenized mice, a mutation causing both profound susceptibility to infection by mouse cytomegalovirus and approximately 20,000-fold sensitization to lipopolysaccharide (LPS), poly(I.C) and immunostimulatory (CpG) DNA. The LPS hypersensitivity phenotype is not suppressed by mutations in Myd88, Trif, Tnf, Tnfrsf1a, Ifnb, Ifng or Stat1, genes contributing to LPS responses, and results from an abnormality extrinsic to hematopoietic cells. The phenotype is due to a null allele of Kcnj8, encoding Kir6.1, a protein that combines with SUR2 to form an ATP-sensitive potassium channel (K(ATP)) expressed in coronary artery smooth muscle and endothelial cells. In Drosophila melanogaster, suppression of dSUR by RNA interference similarly causes hypersensitivity to infection by flock house virus. Thus, K(ATP) evolved to serve a homeostatic function during infection, and in mammals it prevents coronary artery vasoconstriction induced by cytokines dependent on TLR and/or MDA5 immunoreceptors.  相似文献   

5.
New diseases of humans, animals and plants emerge regularly. Enhanced virulence on a new host can be facilitated by the acquisition of novel virulence factors. Interspecific gene transfer is known to be a source of such virulence factors in bacterial pathogens (often manifested as pathogenicity islands in the recipient organism) and it has been speculated that interspecific transfer of virulence factors may occur in fungal pathogens. Until now, no direct support has been available for this hypothesis. Here we present evidence that a gene encoding a critical virulence factor was transferred from one species of fungal pathogen to another. This gene transfer probably occurred just before 1941, creating a pathogen population with significantly enhanced virulence and leading to the emergence of a new damaging disease of wheat.  相似文献   

6.
The identification of genes underlying quantitative-trait loci (QTL) for complex diseases, such as rheumatoid arthritis, is a challenging and difficult task for the human genome project. Through positional cloning of the Pia4 QTL in rats, we found that a naturally occurring polymorphism of Ncf1 (encoding neutrophil cytosolic factor 1, a component of the NADPH oxidase complex) regulates arthritis severity. The disease-related allele of Ncf1 has reduced oxidative burst response and promotes activation of arthritogenic T cells. Pharmacological treatment with substances that activate the NADPH oxidase complex is shown to ameliorate arthritis. Hence, Ncf1 is associated with a new autoimmune mechanism leading to severe destructive arthritis, notably similar to rheumatoid arthritis in humans.  相似文献   

7.
Cytogenetic aberrations have been reported in 45,000 human neoplasms. Structural balanced rearrangements are associated with distinct tumor subtypes with remarkable specificity and have been essential for identifying genes involved in tumorigenesis. All balanced rearrangements that have been characterized molecularly act by deregulating a gene in one of the breakpoints or by creating a fusion gene. Because most recurrent aberrations and rearranged genes have been found in hematological disorders, whereas numerous genomic imbalances have been identified in solid tumors, it has become generally accepted that there are pathogenetic differences between these neoplasms. We here show that in every tumor type, the numbers of recurrent balanced chromosome abnormalities, fusion genes and genes rearranged as a consequence of balanced aberrations are simply a function of the number of cases with an abnormal karyotype. Hence, there may not be any fundamental tissue-specific differences in the genetic mechanisms by which neoplasia is initiated.  相似文献   

8.
A therapeutic strategy for treating cancer is to target and eradicate cancer stem cells (CSCs) without harming their normal stem cell counterparts. The success of this approach relies on the identification of molecular pathways that selectively regulate CSC function. Using BCR-ABL-induced chronic myeloid leukemia (CML) as a disease model for CSCs, we show that BCR-ABL downregulates the Blk gene (encoding B-lymphoid kinase) through c-Myc in leukemic stem cells (LSCs) in CML mice and that Blk functions as a tumor suppressor in LSCs but does not affect normal hematopoietic stem cells (HSCs) or hematopoiesis. Blk suppresses LSC function through a pathway involving an upstream regulator, Pax5, and a downstream effector, p27. Inhibition of this Blk pathway accelerates CML development, whereas increased activity of the Blk pathway delays CML development. Blk also suppresses the proliferation of human CML stem cells. Our results show the feasibility of selectively targeting LSCs, an approach that should be applicable to other cancers.  相似文献   

9.
DNA methylation is associated with malignant transformation, but limitations imposed by genetic variability, tumor heterogeneity, availability of paired normal tissues and methodologies for global assessment of DNA methylation have limited progress in understanding the extent of epigenetic events in the initiation and progression of human cancer and in identifying genes that undergo methylation during cancer. We developed a mouse model of T/natural killer acute lymphoblastic leukemia that is always preceded by polyclonal lymphocyte expansion to determine how aberrant promoter DNA methylation and consequent gene silencing might be contributing to leukemic transformation. We used restriction landmark genomic scanning with this mouse model of preleukemia reproducibly progressing to leukemia to show that specific genomic methylation is associated with only the leukemic phase and is not random. We also identified Idb4 as a putative tumor-suppressor gene that is methylated in most mouse and human leukemias but in only a minority of other human cancers.  相似文献   

10.
Transmission ratio distortion in the mouse is caused by several t-complex distorters (Tcds) acting in trans on the t-complex responder (Tcr). Tcds additively affect the flagellar movement of all spermatozoa derived from t/+ males; sperm carrying Tcr are rescued, resulting in an advantage for t sperm in fertilization. Here we show that Tagap1, a GTPase-activating protein, can act as a distorter. Tagap1 maps to the Tcd1 interval and has four t loci, which encode altered proteins including a C-terminally truncated form. Overexpression of wild-type Tagap1 in sperm cells phenocopied Tcd function, whereas a loss-of-function Tagap1 allele reduced the transmission rate of the t6 haplotype. The combined data strongly suggest that the t loci of Tagap1 produce Tcd1a. Our results unravel the molecular nature of a Tcd and demonstrate the importance of small G proteins in transmission ratio distortion in the mouse.  相似文献   

11.
Host genetics has an important role in leprosy, and variants in the shared promoter region of PARK2 and PACRG were the first major susceptibility factors identified by positional cloning. Here we report the linkage disequilibrium mapping of the second linkage peak of our previous genome-wide scan, located close to the HLA complex. In both a Vietnamese familial sample and an Indian case-control sample, the low-producing lymphotoxin-alpha (LTA)+80 A allele was significantly associated with an increase in leprosy risk (P = 0.007 and P = 0.01, respectively). Analysis of an additional case-control sample from Brazil and an additional familial sample from Vietnam showed that the LTA+80 effect was much stronger in young individuals. In the combined sample of 298 Vietnamese familial trios, the odds ratio of leprosy for LTA+80 AA/AC versus CC subjects was 2.11 (P = 0.000024), which increased to 5.63 (P = 0.0000004) in the subsample of 121 trios of affected individuals diagnosed before 16 years of age. In addition to identifying LTA as a major gene associated with early-onset leprosy, our study highlights the critical role of case- and population-specific factors in the dissection of susceptibility variants in complex diseases.  相似文献   

12.
Hereditary pheochromocytoma (PCC) is often caused by germline mutations in one of nine susceptibility genes described to date, but there are familial cases without mutations in these known genes. We sequenced the exomes of three unrelated individuals with hereditary PCC (cases) and identified mutations in MAX, the MYC associated factor X gene. Absence of MAX protein in the tumors and loss of heterozygosity caused by uniparental disomy supported the involvement of MAX alterations in the disease. A follow-up study of a selected series of 59 cases with PCC identified five additional MAX mutations and suggested an association with malignant outcome and preferential paternal transmission of MAX mutations. The involvement of the MYC-MAX-MXD1 network in the development and progression of neural crest cell tumors is further supported by the lack of functional MAX in rat PCC (PC12) cells and by the amplification of MYCN in neuroblastoma and suggests that loss of MAX function is correlated with metastatic potential.  相似文献   

13.
Gaut B 《Nature genetics》2012,44(2):115-116
A new study reports SNP genotypes of over 1,300 Arabidopsis thaliana accessions from throughout Eurasia, providing a resource for genome-wide association studies and studies of local adaptation. The extensive data are also used to identify targets of natural selection and to describe genome-wide patterns of recombination.  相似文献   

14.
Wang W  Yu H  Long M 《Nature genetics》2004,36(5):523-527
Gene fission and fusion, the processes by which a single gene is split into two separate genes and two adjacent genes are fused into a single gene, respectively, are among the primary processes that generate new genes. Despite their seeming reversibility, nothing is known about the mechanism of gene fission. Because the nucleotide sequences of fission genes record little about their origination process, conventional analysis of duplicate genes may not be powerful enough to unravel the underlying mechanism. In a survey for young genes in species of the Drosophila melanogaster subgroup using fluorescence in situ hybridization, we identified a young gene family, monkey king, whose genesis sheds light on the evolutionary process of gene fission. Its members originated 1-2 million years ago as retroposed duplicates and evolved into fission genes that separately encode protein domains from a multidomain ancestor. The mechanism underlying this process is gene duplication with subsequent partial degeneration.  相似文献   

15.
16.
Linkage analysis and haplotype mapping in interspecific mouse crosses (Mus musculus x Mus spretus) identified the gene encoding Aurora2 (Stk6 in mouse and STK15 in human) as a candidate skin tumor susceptibility gene. The Stk6 allele inherited from the susceptible M. musculus parent was overexpressed in normal cells and preferentially amplified in tumor cells from F(1) hybrid mice. We identified a common genetic variant in STK15 (resulting in the amino acid substitution F31I) that is preferentially amplified and associated with the degree of aneuploidy in human colon tumors. The Ile31 variant transforms rat1 cells more potently than the more common Phe31 variant. The E2 ubiquitin-conjugating enzyme UBE2N was a preferential binding partner of the 'weak' STK15 Phe31 variant form in yeast two-hybrid screens and in human cells. This interaction results in colocalization of UBE2N with STK15 at the centrosomes during mitosis. These results are consistent with an important role for the Ile31 variant of STK15 in human cancer susceptibility.  相似文献   

17.
18.
Lin S  Chakravarti A  Cutler DJ 《Nature genetics》2004,36(11):1181-1188
Genome-wide disease-association mapping has been heralded as the study design of the next generation, but the lack of analytical methods to use genotype data fully is a large stumbling block. Here we describe an algorithm and statistical method that efficiently and exhaustively exploits haplotype information by subjecting alleles (a marker or contiguous sets of markers) from sliding windows of all sizes to transmission disequilibrium tests. By applying our method to simulated data and to Hirschsprung disease, we show that it can detect both common and rare disease variants of small effect. These results show that the theoretical benefits of genome-wide association studies are at last realizable.  相似文献   

19.
Leber congenital amaurosis (LCA) is an autosomal recessive retinal dystrophy that manifests with genetic heterogeneity. We sequenced the exome of an individual with LCA and identified nonsense (c.507G>A, p.Trp169*) and missense (c.769G>A, p.Glu257Lys) mutations in NMNAT1, which encodes an enzyme in the nicotinamide adenine dinucleotide (NAD) biosynthesis pathway implicated in protection against axonal degeneration. We also found NMNAT1 mutations in ten other individuals with LCA, all of whom carry the p.Glu257Lys variant.  相似文献   

20.
An isolated defect of respiratory chain complex I activity is a frequent biochemical abnormality in mitochondrial disorders. Despite intensive investigation in recent years, in most instances, the molecular basis underpinning complex I defects remains unknown. We report whole-exome sequencing of a single individual with severe, isolated complex I deficiency. This analysis, followed by filtering with a prioritization of mitochondrial proteins, led us to identify compound heterozygous mutations in ACAD9, which encodes a poorly understood member of the mitochondrial acyl-CoA dehydrogenase protein family. We demonstrated the pathogenic role of the ACAD9 variants by the correction of the complex I defect on expression of the wildtype ACAD9 protein in fibroblasts derived from affected individuals. ACAD9 screening of 120 additional complex I-defective index cases led us to identify two additional unrelated cases and a total of five pathogenic ACAD9 alleles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号