首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aberrant patterns of X chromosome inactivation in bovine clones   总被引:24,自引:0,他引:24  
  相似文献   

2.
3.
Imprinted X inactivation maintained by a mouse Polycomb group gene   总被引:1,自引:0,他引:1  
  相似文献   

4.
Tsix, a gene antisense to Xist at the X-inactivation centre   总被引:23,自引:0,他引:23  
In mammals, dosage compensation is achieved by X inactivation and is regulated in cis by the X-inactivation centre (Xic) and Xist. The Xic controls X-chromosome counting, choice of X to inactivate and initiation of silencing. Xic action culminates in a change in Xist RNA property from a scarce, unstable RNA to highly expressed Xist RNA that coats the future inactive X. Deleting a 65-kb region downstream of Xist results in constitutive Xist expression and X inactivation, implying the presence of a cis-regulatory element. In this region, we now report the discovery of a gene antisense to Xist. Tsix is a 40-kb RNA originating 15 kb downstream of Xist and transcribed across the Xist locus. Tsix sequence is conserved at the human XIC. Tsix RNA has no conserved ORFs, is seen exclusively in the nucleus and is localized at Xic. Before the onset of X inactivation, Tsix is expressed from both X chromosomes. At the onset of X inactivation, Tsix expression becomes monoallelic, is associated with the future active X and persists until Xist is turned off. Tsix is not found on the inactive X once cells enter the X-inactivation pathway. Tsix has features suggesting a role in regulating the early steps of X inactivation, but not the silencing step.  相似文献   

5.
RNA sequencing shows no dosage compensation of the active X-chromosome   总被引:1,自引:0,他引:1  
Xiong Y  Chen X  Chen Z  Wang X  Shi S  Wang X  Zhang J  He X 《Nature genetics》2010,42(12):1043-1047
Mammalian cells from both sexes typically contain one active X chromosome but two sets of autosomes. It has previously been hypothesized that X-linked genes are expressed at twice the level of autosomal genes per active allele to balance the gene dose between the X chromosome and autosomes (termed 'Ohno's hypothesis'). This hypothesis was supported by the observation that microarray-based gene expression levels were indistinguishable between one X chromosome and two autosomes (the X to two autosomes ratio (X:AA) ~1). Here we show that RNA sequencing (RNA-Seq) is more sensitive than microarray and that RNA-Seq data reveal an X:AA ratio of ~0.5 in human and mouse. In Caenorhabditis elegans hermaphrodites, the X:AA ratio reduces progressively from ~1 in larvae to ~0.5 in adults. Proteomic data are consistent with the RNA-Seq results and further suggest the lack of X upregulation at the protein level. Together, our findings reject Ohno’s hypothesis, necessitating a major revision of the current model of dosage compensation in the evolution of sex chromosomes.  相似文献   

6.
Mammals compensate for different doses of X-chromosome-linked genes in male (XY) and female (XX) somatic cells by terminally inactivating all but one X chromosome in each cell. A transiently inactive X chromosome is also found in germ cells, specifically in premeiotic oogenic cells and in meiotic and postmeiotic spermatogenic cells. Here we show that the Xist gene, which is a expressed predominantly from the inactive X-chromosome in female somatic cells, is also expressed in germ cells of both sexes, but only at those stages when an inactive X chromosome is present. This suggests support for the putative role of Xist as a regulator of X-chromosome inactivation and suggest a common mechanism for the initiation and/or maintenance of X-chromosome inactivation in all cell types.  相似文献   

7.
Sex chromosomes are subject to sex-specific selective evolutionary forces. One model predicts that genes with sex-biased expression should be enriched on the X chromosome. In agreement with Rice's hypothesis, spermatogonial genes are over-represented on the X chromosome of mice and sex- and reproduction-related genes are over-represented on the human X chromosome. Male-biased genes are under-represented on the X chromosome in worms and flies, however. Here we show that mouse spermatogenesis genes are relatively under-represented on the X chromosome and female-biased genes are enriched on it. We used Spo11(-/-) mice blocked in spermatogenesis early in meiosis to evaluate the temporal pattern of gene expression in sperm development. Genes expressed before the Spo11 block are enriched on the X chromosome, whereas those expressed later in spermatogenesis are depleted. Inactivation of the X chromosome in male meiosis may be a universal driving force for X-chromosome demasculinization.  相似文献   

8.
9.
10.
Embryonic stem (ES) cells are important tools in the study of gene function and may also become important in cell therapy applications. Establishment of stable XX ES cell lines from mouse blastocysts is relatively problematic owing to frequent loss of one of the two X chromosomes. Here we show that DNA methylation is globally reduced in XX ES cell lines and that this is attributable to the presence of two active X chromosomes. Hypomethylation affects both repetitive and unique sequences, the latter including differentially methylated regions that regulate expression of parentally imprinted genes. Methylation of differentially methylated regions can be restored coincident with elimination of an X chromosome in early-passage parthenogenetic ES cells, suggesting that selection against loss of methylation may provide the basis for X-chromosome instability. Finally, we show that hypomethylation is associated with reduced levels of the de novo DNA methyltransferases Dnmt3a and Dnmt3b and that ectopic expression of these factors restores global methylation levels.  相似文献   

11.
Dosage compensation of the active X chromosome in mammals   总被引:20,自引:0,他引:20  
Monosomy of the X chromosome owing to divergence between the sex chromosomes leads to dosage compensation mechanisms to restore balanced expression between the X and the autosomes. In Drosophila melanogaster, upregulation of the male X leads to dosage compensation. It has been hypothesized that mammals likewise upregulate their active X chromosome. Together with X inactivation, this mechanism would maintain balanced expression between the X chromosome and autosomes and between the sexes. Here, we show that doubling of the global expression level of the X chromosome leads to dosage compensation in somatic tissues from several mammalian species. X-linked genes are highly expressed in brain tissues, consistent with a role in cognitive functions. Furthermore, the X chromosome is expressed but not upregulated in spermatids and secondary oocytes, preserving balanced expression of the genome in these haploid cells. Upon fertilization, upregulation of the active X must occur to achieve the observed dosage compensation in early embryos.  相似文献   

12.
13.
Studies of histone methylation have shown that H3 can be methylated at lysine 4 (Lys4) or lysine 9 (Lys9). Whereas H3-Lys4 methylation has been correlated with active gene expression, H3-Lys9 methylation has been linked to gene silencing and assembly of heterochromatin in mouse and Schizosaccharomyces pombe. The chromodomain of mouse HP1 (and Swi6 in S. pombe) binds H3 methylated at Lys9, and methylation at this site is thought to mark and promote heterochromatin assembly. We have used a well-studied model of mammalian epigenetic silencing, the human inactive X chromosome, to show that enrichment for H3 methylated at Lys9 is also a distinguishing mark of facultative heterochromatin. In contrast, H3 methylated at Lys4 is depleted in the inactive X chromosome, except in three 'hot spots' of enrichment along its length. Chromatin immunoprecipitation analyses further show that Lys9 methylation is associated with promoters of inactive genes, whereas Lys4 methylation is associated with active genes on the X chromosome. These data demonstrate that differential methylation at two distinct sites of the H3 amino terminus correlates with contrasting gene activities and may be part of a 'histone code' involved in establishing and maintaining facultative heterochromatin.  相似文献   

14.
Imprinted genes are expressed from only one of the parental alleles and are marked epigenetically by DNA methylation and histone modifications. The paternally expressed gene insulin-like growth-factor 2 (Igf2) is separated by approximately 100 kb from the maternally expressed noncoding gene H19 on mouse distal chromosome 7. Differentially methylated regions in Igf2 and H19 contain chromatin boundaries, silencers and activators and regulate the reciprocal expression of the two genes in a methylation-sensitive manner by allowing them exclusive access to a shared set of enhancers. Various chromatin models have been proposed that separate Igf2 and H19 into active and silent domains. Here we used a GAL4 knock-in approach as well as the chromosome conformation capture technique to show that the differentially methylated regions in the imprinted genes Igf2 and H19 interact in mice. These interactions are epigenetically regulated and partition maternal and paternal chromatin into distinct loops. This generates a simple epigenetic switch for Igf2 through which it moves between an active and a silent chromatin domain.  相似文献   

15.
To further our understanding of initiation and imprinting of X-chromosome inactivation, we have examined methylation of specific CpG sites of X-linked Pgk-1 and G6pd genes throughout female mouse development. Methylation occurs around the time of inactivation and earlier for Pgk-1, which is closer to the X-inactivation centre. In female primordial germ cells, the inactive X chromosome escapes methylation; this may underly the reversibility of inactivation at meiosis. Similarly, the genes are unmethylated on the inactive X chromosome in sperm; hence, the imprint specifying preferential X-inactivation in extra-embryonic tissues must reside elsewhere.  相似文献   

16.
Mitotic chromosome segregation is facilitated by the cohesin complex, which maintains physical connections between sister chromatids until anaphase. Meiotic cell division is considerably more complex, as cohesion must be released sequentially to facilitate orderly segregation of chromosomes at both meiosis I and meiosis II. This necessitates meiosis-specific cohesin components; recent studies in rodents suggest that these influence chromosome behavior during both cell division and meiotic prophase. To elucidate the role of the meiosis-specific cohesin SMC1beta (encoded by Smc1l2) in oogenesis, we carried out meiotic studies of female SMC1beta-deficient mice. Our results provide the first direct evidence that SMC1beta acts as a chiasma binder in mammals, stabilizing sites of exchange until anaphase. Additionally, our observations support the hypothesis that deficient cohesion is an underlying cause of human age-related aneuploidy.  相似文献   

17.
Inactivation of TGF-beta family signaling is implicated in colorectal tumor progression. Using cis-Apc(+/Delta716) Smad4(+/-) mutant mice (referred to as cis-Apc/Smad4), a model of invasive colorectal cancer in which TGF-beta family signaling is blocked, we show here that a new type of immature myeloid cell (iMC) is recruited from the bone marrow to the tumor invasion front. These CD34(+) iMCs express the matrix metalloproteinases MMP9 and MMP2 and the CC-chemokine receptor 1 (CCR1) and migrate toward the CCR1 ligand CCL9. In adenocarcinomas, expression of CCL9 is increased in the tumor epithelium. By deleting Ccr1 in the background of the cis-Apc/Smad4 mutant, we further show that lack of CCR1 prevents accumulation of CD34(+) iMCs at the invasion front and suppresses tumor invasion. These results indicate that loss of transforming growth factor-beta family signaling in tumor epithelium causes accumulation of iMCs that promote tumor invasion.  相似文献   

18.
19.
Lacefield S  Murray AW 《Nature genetics》2007,39(10):1273-1277
Improper meiotic chromosome segregation causes conditions such as Down's syndrome. Recombination promotes proper chromosome segregation in meiosis I; chromosomes without crossovers near the centromere are more likely to segregate to the same spindle pole (nondisjoin). Here we have used budding yeast to determine whether the spindle checkpoint promotes segregation of such chromosomes. In checkpoint-defective mad2Delta cells, properly segregating chromosomes have more crossovers near the centromere than their wild-type counterparts, and an artificial tether that holds chromosomes together suppresses nondisjunction as long as the tether is near the centromere. The tether partially rescues the segregation of chromosomes that lack crossovers.  相似文献   

20.
A new X chromosome-specific repetitive sequence, a 3 kilobase HindIII clone with a base composition of 63% C+G, has been isolated. The sequence is organized as a hypervariable tandem repeat cluster ranging in size from 150-350 kilobases, with outlying single copies. This locus, designated DXZ4 and mapped to chromosome band Xq24, may consist of as many as 50 variable-length alleles. It represents a class of variable number of tandem repeat polymorphism which may be termed 'macrosatellite'. The cluster is highly methylated on the active X chromosome and hypomethylated on the inactive X.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号