首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
改进k均值聚类算法在网络入侵检测中的应用研究   总被引:2,自引:0,他引:2  
针对k-means算法事先必须获知聚类数目以及难以确定初始中心的缺点, 提出了一种改进的k-means聚类算法.改进后的算法首先使用了复合形和粒子群算法来选取聚类的初始中心点,然后使用k-means算法快速收敛获取聚类结果.实验表明:把改进后的算法用于网络入侵检测系统中,可以提高不需指导的异常检测的检测率,降低误检率.  相似文献   

2.
由于Ad hoc网络的独特网络特性,其安全性特别脆弱.在分析了Ad hoc网络安全性的基础上,提出了一种聚类算法和人工免疫系统相结合来进行入侵检测的方法.该算法是一种无监督异常检测算法,它具有可扩展性、对输入数据集的顺序不敏感等特性,有处理不同类型数据和噪声数据的能力.实验表明,该算法可以改进Adhoc网络入侵检测的检测率和误检率.  相似文献   

3.
赵晖 《科学技术与工程》2012,12(23):5797-5800
为了进一步提高网络入侵检测的效果,提出一种基于聚类集成的入侵检测算法。首先利用Bagging算法从训练集中生成多个训练子集。然后调用模糊C均值聚类算法训练并生产多个基本聚类器。然后利用信息论构造适应度函数。采用粒子群算法从上述聚类集体中获得一个具有最优性能的集成聚类器。仿真实验结果表明,该算法能有效的提高入侵检测的精度,具有较高的泛化性和和稳定性。  相似文献   

4.
经典的 K 均值聚类算法是基于欧式距离的,它只适用于球形结构的聚类,而且在处理数据时不考虑变量之间的相关性和各变量的重要性差异.针对以上问题改进了 K 均值聚类算法,将马氏距离与 K 均值相结合,并在目标函数中增加变量权重因子和协方差矩阵调节因子,利用马氏距离优点有效地解决了 K 均值聚类算法的缺陷,最后通过实验证实了该方法的可行性和有效性  相似文献   

5.
针对标准模糊C均值聚类算法(FCM)在云计算平台下的入侵检测中存在检测精度不高等问题,提出一种基于目标函数优化模糊C均值聚类算法的云计算入侵检测模型。该模型采用核函数增强FCM算法的寻优能力,根据Mercer核定义优化FCM算法的目标函数,使用拉格朗日数乘法求得聚类中心和隶属度矩阵,有效降低算法的复杂度。研究结果表明:所提出的基于目标函数优化的FCM算法与传统的FCM算法相比,对云计算网络入侵检测的准确率较高,具有更好的收敛性能。  相似文献   

6.
林辉 《科技信息》2012,(23):89-89
本文设计一种入侵检测系统模型,然后将聚类算法k均值聚类算法应用于IDS,针对IDS的被检测数据的特点,研究了如何通过数据预处理技术使k均值聚类算法在IDS数据源上得到更好的挖掘效率。  相似文献   

7.
针对网络入侵检测与聚类等问题,提出了一种综合模糊聚类与改进的SOM神经网络方法.通过对网络入侵数据提取、分析和处理,建立了网络入侵检测聚类模型,并对传统SOM网络层次进行改进,结合易发的网络入侵类型有针对性地对网络入侵数据进行聚类.网络入侵检测聚类与其他方法比较的结果表明,该模型在网络入侵检测聚类中具有更高的准确性和均衡性,该方法能有效提高网络入侵分类精度,减少聚类误差.  相似文献   

8.
基于免疫粒子群的K均值聚类算法   总被引:2,自引:0,他引:2  
粒子群算法是一类高效求解连续函数优化的随机搜索算法,在K均值聚类算法中得到广泛应用,但是在群体进化后期容易陷入局部极值,针对算法缺点,提出了一个新的聚类算法--基于免疫过程的粒子群K均值聚类算法,并将此算法与K均值聚类算法和粒子群K均值聚类算法进行比较.理论分析和数据实验证明,该算法有较好的全局收敛性,不仅能有效的克服传统的K均值聚类陷入局部极小值的缺点,而且全局收敛能力优于基于粒子群的K均值聚类算法.  相似文献   

9.
基于模糊聚类的入侵检测算法   总被引:1,自引:1,他引:1  
针对数据中各个字段属性差异及其对产生入侵行为的作用度分析不足,从缓解模糊入侵检测中误差率高入手,验证其中存在的等价转换失真问题,用动态自反馈理论改造模糊聚类过程,并分析入侵数据类型及其在入侵中所起作用,建立面向混合数据的自反馈模糊聚类方法,并在此基础上构建入侵检测系统.实验表明本方法能够有效提高入侵检测引擎的检测率,降低其误报率,缓解上述问题.  相似文献   

10.
林辉 《河南科学》2012,30(7):910-912
详细地分析了WinPcap的结构,WinPcap提供给用户的函数,根据网络协议和端口对数据包进行过滤,将模糊聚类引入到入侵检测系统中来,用KDD99测试数据进行实验,能有效检测出入侵数据.  相似文献   

11.
随着计算机网络应用的普及和网络活动的日益频繁,计算机的安全问题日益突出。入侵检测系统是信息安全技术中的重要组成部分。然而,传统的入侵检测系统在有效性、适时性和可扩展性方面都存在不足。本文根据数据挖掘的知识,提出基于模糊聚类技术的入侵检测系统模型,并对此模型进行深入研究。仿真证明,该方法对已知或未知的入侵行为都有较好的检测效果,能够检测到其它入侵检测算法不易检测到的入侵行为。  相似文献   

12.
基于遗传模糊聚类算法的入侵检测研究   总被引:1,自引:0,他引:1  
针对常用聚娄算法在网络入侵检测中结果不理想的问题,在研究典型模糊C均值聚类算法(FCM)的基础上,提出了一种结合CA与FCM的网络入侵检测算法GFCM,以克服FCM聚类时对初始值敏感、受噪声影响大、容易陷入局部最优等问题,通过在KDD CUP99数据集上对比实验,证明该算法的检测度高,对网络异常攻击行为检测效果较好。  相似文献   

13.
针对现有数据库入侵检测系统高误报率的问题,提出了一种基于密度聚类数据库入侵检测系统,其检测系统过程分为2个部分,①数据训练阶段:执行事务属性的数据预处理,然后将数据集划分为训练集和测试集,使用点排序识别聚类结构(Ordering of Points To Identify Clustering Structure,OPTICS)来构建用户的正常配置文件;②入侵检测阶段:每个传入行为有2种状态,位于群集内或是集群外,根据其局部异常因子(Local Outlier Factor,LOF)值来确定事务的异常程度,对于LOF1的行为允许访问数据库,其他行为通过采用不同的监督机器学习技术进一步验证是正常值或异常值,实现入侵检测.实验结果表明,与其他现有数据库入侵检测系统相比,本文系统性能优于其他2种系统.  相似文献   

14.
作为一种主动的信息安全保障措施,入侵检测技术有效地弥补了传统安全保护机制所不能解决的问题.先进的检测算法是入侵检测研究的关键技术.首先提出新的相似度函数Dsim(),有效地解决了高维空间聚类选维和降维问题,实现了高效的聚类;接着将Dsim()与近似K-medians算法相结合,提出了新的模糊聚类算法----DCFCM,并将其用于入侵检测.解决了由尖锐边界、孤立点所带来的误报警和漏报警问题,实现了对异常行为的检测.仿真实验结果表明,该系统对网络正常数据和异常数据聚类,进行动态数据分析,实现异常检测的思想是有效的.在网络入侵数据检测中,DCFCM算法相对于传统的FCM算法有较高的检测率和较低的误警率.  相似文献   

15.
针对应用聚类方法检测入侵中参数人为指定的问题,提出了一种新的基于无监督的聚类算法.该方法不需要人为设置参数并且不受数据输入顺序的影响,聚类的形状是任意的,能够较真实地反映数据分布的具体性状.算法通过比较无类标训练集样本间的距离,根据距离最近的样本首先聚合成类的特性,在每一步聚类结束时,再次比较类间距离以及计算类内数据占总数据的比率来确定异常数据类.实验证明该算法处理未知入侵检测问题的检测率为89.5%,误报率为0.4%.  相似文献   

16.
针对蚁群聚类算法存在容易出现停滞现象和过早地收敛于局部最优解的问题,提出一种改进的蚁群聚类入侵检测算法.通过改进蚂蚁搜索解的方法,来改善蚁群算法易于过早地收敛于非最优解的缺陷.使用KDD99作为入侵检测数据集进行仿真实验,结果表明,改进的蚁群聚类算法能有效提高入侵检测的检测率和降低误检率.  相似文献   

17.
基于粒子群优化算法的模糊C-均值聚类   总被引:15,自引:0,他引:15  
利用粒子群优化(PSO)算法全局寻优、 快速收敛的特点, 结合模糊C 均值(FCM)算法提出一种新的模糊聚类算法. 新算法用PSO算法代替了FCM算法的基于梯度下降的迭代过程, 使算法具有很强的全局搜索能力, 很大程度上避免了FCM算法易陷入局部极小的缺陷; 同时也降低了FCM算法对初始值的敏感度. 实验结果表明, 与FCM相比本文算法聚类更为准确, 效率更高.  相似文献   

18.
利用少量的标记数据和约束辅助聚类过程,提出一种基于半监督聚类的入侵检测模型.实验结果表明,与基于监督和非监督学习的入侵检测算法相比,基于半监督聚类的入侵检测算法可以更加有效地检测出未知攻击.  相似文献   

19.
研究了带压缩因子的粒子群算法,通过配置最优参数以及控制收敛速度来改进粒子群聚类算法,并利用它对IRIS数据集和WINE数据集进行测试.实验结果表明,改进后的算法能控制粒子群的更新速度,并有效改进粒子群算法的准确率和全局收敛性.  相似文献   

20.
基于模糊聚类理论的入侵检测数据分析   总被引:5,自引:0,他引:5  
入侵检测系统是网络和信息安全构架的重要组成部分,主要用于区分系统的正常活动和可疑及入侵模式,但是它所面临的挑战是如何有效的检测网络入侵行为以降低误报率和漏报率.基于已有入侵检测方法的不足提出利用模糊C-均值聚类方法对入侵检测数据进行分析,从而发现异常的网络行为模式.通过对CUP99数据集的检测试验表明该方法不但可行而且准确性及效率较高.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号