首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
应用支持向量机算法对湖南省靖州县的滑坡易发性进行评价.首先,通过实地调查、卫片判译及滑坡历史记录,共发现滑坡102处及非滑坡点100处,随机用70%数据来训练模型,30%数据来验证模型;其次,选取坡度、坡向、高度、河流距离、断层距离、公路距离、土地利用和人类活动强度8个地质灾害影响因子作为地质灾害易发性评价指标;然后,...  相似文献   

2.
准确的滑坡易发性评价对防灾减灾具有重大意义。以略阳县为研究区,在确定性系数模型(certainty factor, CF)易发性分区的基础上,剔除极高和高易发区后选取非滑坡点,提取CF值为支持向量机模型(support vector machine, SVM)的输入值,采取灰狼优化算法得到最优参数建立CF-SVM模型对研究区进行预测,同时与随机选取的非滑坡点SVM模型进行对比。结果表明:CF-SVM模型在极高和高易发区涵盖了74.2%的历史滑坡点,且受试者特征工作曲线下的面积(area under receiver operating characteristic curve, AUC)达到0.95,均高于SVM模型,由此说明CF-SVM模型具有更高的准确率,并且证明了在CF模型基础上选取非滑坡点的可行性,可为该区域的风险管理提供科学依据。  相似文献   

3.
滑坡易发性评价研究对滑坡灾害防治具有重要意义。多模型耦合在滑坡易发性评价中运用广泛,但将(Weight of evidence,WOE)和支持向量机模型(Support Vector Machine,SVM)模型耦合进行滑坡易发性评价研究较少。以滇东北山区威信县为研究区,选取坡度等12个滑坡评价因子建立滑坡易发性评价指标体系,根据证据权计算得到证据权对比度、滑坡栅格占比和分级栅格占比,对指标因子进行分级,构建WOE-SVM模型计算得到滑坡易发性指数(Landslide susceptibility index,LSI),利用GIS平台得到研究区易发性分级图。结果表明:滑坡极高和高易发区主要分布河流流域和人类工程活动频繁区域,SVM和WOE-SVM模型评价结果与滑坡空间位置分布基本一致,但耦合模型精度高于单一SVM模型,其评价结果也更加合理有效,可为当地滑坡灾害的治理与预防提供一定参考价值。  相似文献   

4.
基于频率比-随机森林模型的滑坡易发性评价   总被引:1,自引:0,他引:1       下载免费PDF全文
本文以陕西省洋县为研究区,通过搜集资料、实地调查获得研究区滑坡分布状况。结合研究区地质环境特征与前人研究经验,初步选取海拔、坡度、坡向、地形起伏度、曲率、距水系距离、距道路距离、降雨量及岩土体类型,共九种滑坡影响因子展开滑坡易发性研究。首先,采用皮尔森相关系数法对各因子间的相关性进行分析。其次,按照70/30的比例将滑坡数据随机划分为模型训练集与模型验证集。然后,采用模型训练集对频率比模型(FR)、随机森林模型(RF)及两者的耦合模型(FR-RF)进行训练,利用模型验证集对模型训练结果进行检验,并绘制ROC曲线。最后,利用验证后的模型绘制研究区滑坡易发性分区图。结果表明:(1)所选取的9个滑坡影响因子是相互独立的;(2)本研究所采用的三个模型均表现良好,其中FR-RF模型预测准确度最高(0.901),其次为RF模型(0.863),最后为FR(0.833);(3)本研究所绘制的滑坡易发性分区图可为当地政府制定土地利用规划、预防滑坡等方案提供参考借鉴。  相似文献   

5.
区域滑坡易发性评价是国内外地质灾害研究的重点和热点。目前,国内外学者已提出了支持向量机(support vector machine,SVM)、BP神经网络和随机森林等多种模型并成功用于滑坡易发性评价。但在利用这些机器学习模型评价滑坡易发性时,存在着参数选取困难、建模效率低、模型训练时间长和对评价指标解释能力弱等问题。为简化建模过程、提高预测精度及增强模型的可解释性,提出了基于频率比分析和偏最小二乘回归法(partial least squares regression,PLSR)的滑坡易发性评价模型。PLSR模型很好地发挥了主成分分析和回归分析的优势,考虑了评价指标间的内在联系,具有建模过程简洁、可解释性强的优点。将结合频率比法的PLSR模型应用于江西省龙南县滑坡易发性评价,并与BP神经网络、SVM模型的易发性评价结果进行对比。研究表明:PLSR模型的预测精度优于BP神经网络,且与SVM模型预测精度接近;另外,在综合考虑建模效率、预测精度和模型解释能力的情况下,PLSR模型具有更高的实用性。  相似文献   

6.
地下水位动态预测对滑坡稳定性评价具有关键作用。滑坡地下水位演化过程是一个受水文地质条件控制,并受降雨、库水和气温等多种影响因素综合作用而发展演化的非线性动力系统,地下水位与其影响因素之间存在非线性响应关系。以三峡库区白家包滑坡地下水位监测数据为例,在深入分析滑坡地下水位变化特征及其与影响因素响应关系的基础上,利用非线性智能遗传算法和支持向量机建立进化支持向量机耦合模型,并对地下水位进行预测,其预测结果的均方差和相关系数的平方分别为0.013和0.929,说明预测结果与实测值较吻合。选择神经网络模型进行对比,耦合模型的均方差小154%,而相关系数的平方大10%。综合表明进化支持向量机耦合模型具有较好的拟合和泛化能力,是一种行之有效的滑坡地下水位预测方法。  相似文献   

7.
滑坡灾害对居民生活和社会经济构成严重威胁。以新源县为研究区,选取17个滑坡影响因子作为初始因子集,通过多重共线性分析,筛选10个滑坡因子并构建研究区滑坡易发性评估指标体系。分别基于逻辑回归(logistic regression, LR)、支持向量机(support vector machine, SVM)和随机森林(random forest, RF)3种典型模型进行滑坡易发性评估。利用受试者操作特征(receiver operating characteristics, ROC)曲线下的面积(area under curve, AUC)、滑坡比及野外实地考察对模型评估结果进行对比验证分析。结果显示:低易发区主要集中在巩乃斯河谷平原地区,这些区域地势平坦,滑坡易发性相对较低。高易发区主要集中于巩乃斯河谷北部、阿吾拉勒山丘陵区,以及南部伊什基里克山和那拉提山分水岭两侧、恰甫河以南区域,地形复杂多变,滑坡易发性较高。在3种评估模型中,SVM模型表现最佳,其AUC高达0.985,说明该模型在滑坡易发性评估中的准确性较高。此外,SVM模型评估得到的高易发区滑坡点密度大,占比达到86%,进一步验证了其在滑坡易发性评估中的有效性。综合以上结果,SVM模型在新源县滑坡易发性评估中的合理性优于其他两种算法,能够为该地区的滑坡防治提供科学的理论依据和参考。  相似文献   

8.
以三峡库区白水河滑坡为例,首先分析降雨量与库水位等影响因素与滑坡变形特征的响应关系,然后利用粗糙集理论对10个初始影响因子进行属性约减,筛选出影响滑坡变形的核因子集,最后基于该因子集建立粒子群优化支持向量回归模型,对滑坡位移速率进行预测。研究结果表明:测试样本的预测结果与实测值变化趋势基本一致,其平均绝对误差为0.234 mm/d,均方差和判定系数分别为0.163和0.520。粗糙集理论在分析滑坡变形特征、筛选关键因子方面的适用性与科学性,构建的粗糙集-粒子群优化支持向量机模型具有较高的泛化能力,是一种有效的滑坡变形预测方法。  相似文献   

9.
10.
Boosting集成支持向量回归机的滑坡位移预测   总被引:1,自引:0,他引:1  
支持向量回归机(SVR)在实际的学习应用中,由于数据时空的复杂性和算法本身的参数选择,学习模型难以达到预期的效果.针对这个问题,提出了基于Boosting集成的支持向量回归机方法.通过在原始数据集加权采样的基础上,进行多次迭代子SVR机器学习,不断调整样本权值再采样,优化机器学习模型,然后对迭代所得的每级支持向量回归结果按某种组合方法进行集成,得到最终的回归函数形式.应用该方法进行了仿真试验和滑坡变形时序预测研究.结果表明:使用集成的SVR进行回归预测较之单一的SVR具有更高的准确性和更好的泛化性.对Boosting与Bagging 2种不同的集成SVR,进行了比较研究,试验结果表明,2种算法性能相差不大,总体上前者强于后者.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号