首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The dose-dependent effect of CGP 45715A on the LTD4-induced Ca2+ response of glomerular mesangial cells has been studied. Our results demonstrate that the LTD4-dependent increase in the cytosolic Ca2+ concentration primarily involves an InsP3-mediated release of Ca2+ from intracellular storage sites and to a minor extent an enhanced influx of Ca2+ through receptor-operated Ca2+ channels located in the plasma membrane. The action of CGP 45715A on the Ca2+ response is an inhibitory one and is convincingly explained by a displacement of LTD4 from its receptor site(s). The contractile effect of LTD4 on pulmonary smooth muscle is proposed to be mainly caused by a receptor-mediated hydrolysis of phosphatidylinositol-4,5-bisphosphate.  相似文献   

2.
Summary The role of Ca2+ in secretagogue-induced insulin release is documented not only by the measurements of45Ca fluxes in pancreatic islets, but also, by direct monitoring of cytosolic free Ca2+, [Ca2+]i. As demonstrated, using the fluorescent indicator quin 2, glyceraldehyde, carbamylcholine and alanine raise [Ca2+]i in the insulin secreting cell line RINm5F, whereas glucose has a similar effect in pancreatic islet cells. The regulation of cellular Ca2+ homeostasis by organelles from a rat insulinoma, was investigated with a Ca2+ selective electrode. The results suggest that both the endoplasmic reticulum and the mitochondria participate in this regulation, albeit at different Ca2+ concentrations. By contrast, the secretory granules do not appear to be involved in the short-term regulation of [Ca2+]i. Evidence is presented that inositol 1,4,5-trisphosphate, which is shown to mobilize Ca2+ from the endoplasmic reticulum, is acting as an intracellular mediator in the stimulation of insulin release.  相似文献   

3.
Summary The actions on amphibian embryos of UV-irradiation, exposure to Li+ or exposure to ouabain show interesting parallels with their effects on spontaneous release at the presynaptic terminals of the neuromuscular junction. It is suggested that these treatments serve to raise intracellular Ca2+ ([Ca2+ i) in these examples, and that UV-promoted abnormalities in embryogenesis are a consequence of changes in [Ca2+]i at critical stages in development.  相似文献   

4.
Summary The O2– and Ca2+-paradoxes have a number of features in common and it is suggested that release of cytosolic proteins in both paradoxes is initiated by the activation of a sarcolemma NAD(P)H dehydrogenase which can generate a transmembrane flow of H+ and e and also oxygen radicals or recox cycling which damage ion channels and membrane proteins (phase I). Entry of Ca2+ through the damaged ion channels then exacerbates the damage by further activating this system, either directly or indirectly, and the redox cycling and/or oxygen radicals cause further damage to integral and cytoskeletal proteins of the sarcolemma resulting in microdamage to the integrity of the membrane (phase II) and the consequent release or exocytosis of cytoplasmic proteins and, under specialised condition, the blebbing of the sarcolemma. The system may be primed either by removal of extracellular Ca2+ or by raising [Ca2+]i by a variety of measures, these two actions being synergistic. The system is initially activated in the Ca2+-paradox by the membrane perturbation associated with removal of extracellular Ca2+; prolonged anoxia in the metabolically active cardiac muscle causes a depletion of the ATP supply, particularly in the absence of glucose, and hence a rise in [Ca2+]i in phase I of the oxygen paradox with the consequent activation of the NAD(P)H oxidase at the sarcolemma. Oxygen radicals are probably generated in both paradoxes and may have a partial role in the genesis of damage, but are not essential in the Ca2+-paradox which continues under anoxia. Massive entry of Ca2+ also activates an intracellularly localised dehydrogenase (probably at the SR) which produces myofilament damage by redox cycling.  相似文献   

5.
Based on the findings that proinsulin C-peptide binds specifically to cell membranes, we investigated the effects of C-peptide and related molecules on the intracellular Ca2+ concentration ([Ca2+]i) in human renal tubular cells using the indicator fura-2/AM. The results show that human C-peptide and its C-terminal pentapeptide (positions 27–31, EGSLQ), but not the des (27–31) C-peptide or randomly scrambled C-peptide, elicit a transient increase in [Ca2+]i. Rat C-peptide and rat C-terminal pentapeptide also induce a [Ca2+]i response in human tubular cells, while a human pentapeptide analogue with Ala at position 1 gives no [Ca2+]i response, and those with Ala at positions 2–5 induce responses with different amplitudes. These results define a species cross-reactivity for C-peptide and demonstrate the importance of Glu at position 1 of the pentapeptide. Preincubation of cells with pertussis toxin abolishes the effect on [Ca2+]i by both C-peptide and the pentapeptide. These results are compatible with previous data on C-peptide binding to cells and activation of Na+,K+ATPase. Combined, all data show that C-peptide is a bioactive peptide and suggest that it elicits changes in [Ca2+]i via G-protein-coupled pathways, giving downstream enzyme effects. Received 13 May 2002; accepted 16 May 2002  相似文献   

6.
Changes in cytosolic Ca2+ play an important role in a wide array of cell types and the control of its concentration depends upon the interplay of many cellular constituents. Resting cells maintain cytosolic calcium ([Ca2+]i) at a low level in the face of steep gradients of extracellular and sequestered Ca2+. Many different signals can provoke the opening of calcium channels in the plasma membrane or in intracellular compartments and cause rapid influx of Ca2+ into the cytosol and elevation of [Ca2+]i. After such stimulation Ca2+ ATPases located in the plasma membrane and in the membranes of intracellular stores rapidly return [Ca2+]i to its basal level. Such responses to elevation of [Ca2+]i are a part of an important signal transduction mechanism that uses calcium (often via the binding protein calmodulin) to mediate a variety of cellular actions responsive to outside influences.  相似文献   

7.
The ability of cells to migrate to the destined tissues or lesions is crucial for physiological processes from tissue morphogenesis, homeostasis and immune responses, and also for stem cell-based regenerative medicines. Cytosolic Ca2+ is a primary second messenger in the control and regulation of a wide range of cell functions including cell migration. Extracellular ATP, together with the cognate receptors on the cell surface, ligand-gated ion channel P2X receptors and a subset of G-protein-coupled P2Y receptors, represents common autocrine and/or paracrine Ca2+ signalling mechanisms. The P2X receptor ion channels mediate extracellular Ca2+ influx, whereas stimulation of the P2Y receptors triggers intracellular Ca2+ release from the endoplasmic reticulum (ER), and activation of both type of receptors thus can elevate the cytosolic Ca2+ concentration ([Ca2+]c), albeit with different kinetics and capacity. Reduction in the ER Ca2+ level following the P2Y receptor activation can further induce store-operated Ca2+ entry as a distinct Ca2+ influx pathway that contributes in ATP-induced increase in the [Ca2+]c. Mesenchymal stem cells (MSC) are a group of multipotent stem cells that grow from adult tissues and hold promising applications in tissue engineering and cell-based therapies treating a great and diverse number of diseases. There is increasing evidence to show constitutive or evoked ATP release from stem cells themselves or mature cells in the close vicinity. In this review, we discuss the mechanisms for ATP release and clearance, the receptors and ion channels participating in ATP-induced Ca2+ signalling and the roles of such signalling mechanisms in mediating ATP-induced regulation of MSC migration.  相似文献   

8.
Summary The contraction induced by a Ca2+-independent myosin light chain kinase (MLCK-) was characterized in terms of isometric force (Fo), immediate elastic recoil (SE), unloaded shortening velocity (Vus), shortening under a constant load and ATPase activity of chemically skinned smooth muscle preparations. These parameters were compared to those measured in a Ca2+-induced contraction to assess the nature of cross bridge interaction in the MLCK-induced contraction. Fo developed in chicken gizzard fibers as well as SE were similar in contractions elicited by either agent. Vus in the contraction induced by MLCK-(0.36 mg/ml) was similar though averaged 39.3±8.9% less than Vus induced by Ca2+ (1.6x10–6M) in the control fibers. Addition of Ca2+ (1.6x10–6M) to a contraction induced by MLCK-resulted in small increases in both Fo and Vus. Shortening under a constant load was similar for both types of contractions. The contraction induced by MLCK-was accompanied by an increased rate of ATP hydrolysis. The MLCK-induced contraction is thus kinetically similar though not identical to a contraction induced by Ca2+. We conclude that with respect to actin-myosin interaction, MLCK- and Ca2+-induced contractions are similar.  相似文献   

9.
Summary Zn2+ (10–100 M) elevated the frequency of miniature end-plate potentials (MEPPs) in the mouse diaphragm. The effect did not depend on external Ca2+. Botulinum type A toxin (BTXA, 50 ng/ml) abolished MEPPs almost completely within 30 min. Zn2+ (100 M) restored MEPPs and increased their frequency after they had been abolished by BTXA in Ca2+-free solutions. The antagonistic effect of Zn2+ in the Ca2+-free solution was reduced by exposing the diaphragm to the toxin in the Ca2+-free solutions containing high K+. Thus, the action of BTXA is probably enhanced by depolarization of the motor nerve terminals.  相似文献   

10.
Nickel is considered to be a selective blocker of low-voltage-activated T-type calcium channel. Recently, the Ni2+-binding site with critical histidine-191 (H191) within the extracellular IS3–IS4 domain of the most Ni2+-sensitive Cav3.2 T-channel isoform has been identified. All calcium channels are postulated to also have intrapore-binding site limiting maximal current carried by permeating divalent cations (PDC) and determining the blockade by non-permeating ones. However, the contribution of the two sites to the overall Ni2+ effect and its dependence on PDC remain uncertain. Here we compared Ni2+ action on the wild-type “Ni2+-insensitive” Cav3.1w/t channel and Cav3.1Q172H mutant having glutamine (Q) equivalent to H191 of Cav3.2 replaced by histidine. Each channel was expressed in Xenopus oocytes, and Ni2+ blockade of Ca2+, Sr2+, or Ba2+ currents was assessed by electrophysiology. Inhibition of Cav3.1w/t by Ni2+ conformed to two sites binding. Ni2+ binding with high-affinity site (IC50 = 0.03–3 μM depending on PDC) produced maximal inhibition of 20–30 % and was voltage-dependent, consistent with its location within the channel’s pore. Most of the inhibition (70–80 %) was produced by Ni2+ binding with low-affinity site (IC50 = 240–700 μM). Q172H-mutation mainly affected low-affinity binding (IC50 = 120–160 μM). The IC50 of Ni2+ binding with both sites in the Cav3.1w/t and Cav3.1Q172H was differentially modulated by PDC, suggesting a varying degree of competition of Ca2+, Sr2+, or Ba2+ with Ni2+. We conclude that differential Ni2+-sensitivity of T-channel subtypes is determined only by H-containing external binding sites, which, in the absence of Ni2+, may be occupied by PDC, influencing in turn the channel’s permeation.  相似文献   

11.
Store-operated Ca2+ entry is a pathway that is remodelled in a variety of cancers, and altered expression of the components of store-operated Ca2+ entry is a feature of breast cancer cells of the basal molecular subtype. Studies of store-operated Ca2+ entry in breast cancer cells have used non-specific pharmacological inhibitors, complete depletion of intracellular Ca2+ stores and have mostly focused on MDA-MB-231 cells (a basal B breast cancer cell line). These studies compared the effects of the selective store-operated Ca2+ entry inhibitors Synta66 and YM58483 (also known as BTP2) on global cytosolic free Ca2+ ([Ca2+]CYT) changes induced by physiological stimuli in a different breast cancer basal cell line model, MDA-MB-468. The effects of these agents on proliferation as well as serum and epidermal growth factor (EGF) induced migration were also assessed. Activation with the purinergic receptor activator adenosine triphosphate, produced a sustained increase in [Ca2+]CYT that was entirely dependent on store-operated Ca2+ entry. The protease activated receptor 2 activator, trypsin, and EGF also produced Ca2+ influx that was sensitive to both Synta66 and YM58483. Serum-activated migration of MDA-MB-468 breast cancer cells was sensitive to both store-operated Ca2+ inhibitors. However, proliferation and EGF-activated migration was differentially affected by Synta66 and YM58483. These studies highlight the need to define the exact mechanisms of action of different store-operated calcium entry inhibitors and the impact of such differences in the control of tumour progression pathways.  相似文献   

12.
The endothelium, a monolayer of endothelial cells lining vessel walls, maintains tissue-fluid homeostasis by restricting the passage of the plasma proteins and blood cells into the interstitium. The ion Ca2+, a ubiquitous secondary messenger, initiates signal transduction events in endothelial cells that is critical to control of vascular tone and endothelial permeability. The ion Ca2+ is stored inside the intracellular organelles and released into the cytosol in response to environmental cues. The inositol 1,4,5-trisphosphate (IP3) messenger facilitates Ca2+ release through IP3 receptors which are Ca2+-selective intracellular channels located within the membrane of the endoplasmic reticulum. Binding of IP3 to the IP3Rs initiates assembly of IP3R clusters, a key event responsible for amplification of Ca2+ signals in endothelial cells. This review discusses emerging concepts related to architecture and dynamics of IP3R clusters, and their specific role in propagation of Ca2+ signals in endothelial cells.  相似文献   

13.
Effects of 17-estradiol (E2) in vitro on Na-dependent Ca2+ efflux from, and depolarization-induced Ca2+ uptake into, the nerve cell were studied with the use of synaptosomes isolated from the brain stem, mesencephalic reticular formation (MRF), caudate nucleus and the hippocampus of long-term ovariectomized adult female rats. It was found that E2 (1) at a concentration of 10 nM or lower, stimulates Na-dependent Ca2+ efflux in the caudate nucleus and hippocampus, and does not affect the efflux in MRF and brain stem; (2) at concentrations above 10 nM has no effect on the Ca2+ efflux in any of the four structures investigated; and (3) produces a biphasic effect on the depolarization-induced Ca2+ uptake, increasing it in all structures except MRF at 10 nM concentration, and decreasing it at concentrations higher than 10 nM, irrespective of the structure investigated. These results suggest that E2, acting at extranuclear sites, modulates synaptic transmission via alterations of Ca2+ transport mechanisms in nerve endings.  相似文献   

14.
Acetylcholine releases calcium from cytoplasmic stores and permits an influx of calcium in salivary acinar cells. The resultant rise in [Ca2+]i causes an increase in potassium permeability which is an important part of the secretory response. We have investigated the effects of 12-0-tetradecanoyl phorbol-13-acetate, a potent activator of protein kinase C, upon this regulation of potassium permeability in superfused pieces of rat submandibular salivary gland. This compound inhibited the initial [Ca2+]o-independent component of the response of acetylcholine but had no effect upon the subsequent [Ca2+]o-dependent phase. This compound does not, therefore, appear to inhibit receptor-regulated calcium influx.  相似文献   

15.
Astrocytes are a heterogeneous population of cells that are endowed with a great variety of receptors for neurotransmitters and neuromodulators. Recently prostaglandin E2 has attracted great interest since it is not only released by astrocytes but also activates receptors coupled to either phospholipase C or adenylyl cyclase. We report that EP2 receptor stimulation triggers cAMP production but also causes release of Ca2+ from intracellular stores. This effect is shared by other receptors similarly coupled to adenylyl cyclase and elicited by direct stimulation of the enzyme or application of cAMP analogues. However, the stimulation of the Ca2+ response by cAMP is not mediated by protein kinase A, since a specific antagonist of this kinase had no effect. Such a cross-talk between cAMP and Ca2+ was not observed in all astrocytes. It might therefore reflect a specific resource of either a subpopulation or astrocytes in a specific functional state. Received 6 June 2006; received after revision 25 July 2006; accepted 31 August 2006  相似文献   

16.
Calcium signaling in plants   总被引:9,自引:0,他引:9  
Changes in the cytosolic concentration of calcium ions ([Ca2+]i) play a key second messenger role in signal transduction. These changes are visualized by making use of either Ca2+-sensitive fluorescent dyes or the Ca2+-sensitive photoprotein, aequorin. Here we describe the advances made over the last 10 years or so, which have conclusively demonstrated a second messenger role for [Ca2+]i in a few model plant systems. Characteristic changes in [Ca2+]i have been seen to precede the responses of plant cells and whole plants to physiological stimuli. This has had a major impact on our understanding of cell signaling in plants. The next challenge will be to establish how the Ca2+ signals are encrypted and decoded in order to provide specificity, and we discuss the current understanding of how this may be achieved.  相似文献   

17.
The cytotoxicity of cadmium (Cd) induced autophagy and apoptosis in MES-13 cells was determined by flow cytometry. Autophagy was also assessed by formation of autophagosomes and processing of LC3. Pharmacological inhibition of autophagy resulted in increased of cell viability, suggesting autophagy plays a role in cell death in Cd-treated mesangial cells. Cd also induced a rapid elevation in cytosolic calcium ([Ca2+]i ), and modulation of [Ca2+]i via treatment with IP 3R inhibitor or knockdown of calcineurin resulted in a change in the proportion of cell death, suggesting that the release of calcium from the ER plays a crucial role in Cd-induced cell death. Inhibition of Cd-induced ERK activation by PD 98059 suppressed Cd-induced autophagy, and BAPTA-AM eliminated activation of ERK. BAPTA-AM also inhibited Cd-induced mitochondrial depolarization and activation of caspases. These findings demonstrated that Cd induces both autophagy and apoptosis through elevation of [Ca2+]i, followed by Ca2+-ERK and Ca2+-mitochondria-caspase signaling pathways. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Received 05 July 2008; received after revision 25 August 2008; accepted 17 September 2008  相似文献   

18.
Experiments with permeabilised platelets, and with intact platelets loaded with fluorescent Ca2+-indicators, over the past several years have greatly extended our knowledge and understanding of cytosolic Ca2+ as a platelet activator and its interactions with other cytosolic regulators. This article outlines insights, gained from the use of the fluorescent dyes, into maintenance and restoration of basal [Ca2+]i, mechanisms of receptor-mediated Ca2+-mobilisation and quantitation of [Ca2+]i/response relations in intact human platelets.  相似文献   

19.
Summary The possibility that intracellular Ca2+, which mediates neurotransmitter release, regulation of membrane permeability, microtubule polymerization and axonal transport, is influenced by gonadal steroids via a Na–Ca exchange mechanism was examined. The resting Ca2+ uptake into synaptosomes was measured using crude synaptosomal pellets (P2 fraction), isolated from the brain stem, mesencephalic reticular formation (MRF), nucleus caudatus (NC) and the hippocampus of intact, long-term ovariectomized (OVX) and OVX plus progesterone (P) or estradiol-17 benzoate (EB) treated adult female rats. Irrespective of the brain structure investigated, the uptake was 1) markedly increased in synaptosomes from OVX animals in comparison to intact controls, and 2) reduced to near control values in synaptosomes from OVX rats treated s.c. with a single dose of 2 mg P or 5 g EB. Since Ca2+ influx into synaptosomes was shown earlier to depend on external sodium concentration, which was the same in all experiments described in this work, the results obtained indicate that ovarian steroids modulate basal synaptic activity in the rat brain by suppressing Na-dependent Ca2+ efflux from the nerve cell.  相似文献   

20.
The function and survival of pancreatic β cells critically rely on complex electrical signaling systems composed of a series of ionic events, namely fluxes of K+, Na+, Ca2+ and Cl? across the β cell membranes. These electrical signaling systems not only sense events occurring in the extracellular space and intracellular milieu of pancreatic islet cells, but also control different β cell activities, most notably glucose-stimulated insulin secretion. Three major ion fluxes including K+ efflux through ATP-sensitive K+ (KATP) channels, the voltage-gated Ca2+ (CaV) channel-mediated Ca2+ influx and K+ efflux through voltage-gated K+ (KV) channels operate in the β cell. These ion fluxes set the resting membrane potential and the shape, rate and pattern of firing of action potentials under different metabolic conditions. The KATP channel-mediated K+ efflux determines the resting membrane potential and keeps the excitability of the β cell at low levels. Ca2+ influx through CaV1 channels, a major type of β cell CaV channels, causes the upstroke or depolarization phase of the action potential and regulates a wide range of β cell functions including the most elementary β cell function, insulin secretion. K+ efflux mediated by KV2.1 delayed rectifier K+ channels, a predominant form of β cell KV channels, brings about the downstroke or repolarization phase of the action potential, which acts as a brake for insulin secretion owing to shutting down the CaV channel-mediated Ca2+ entry. These three ion channel-mediated ion fluxes are the most important ionic events in β cell signaling. This review concisely discusses various ionic mechanisms in β cell signaling and highlights KATP channel-, CaV1 channel- and KV2.1 channel-mediated ion fluxes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号