首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 46 毫秒
1.
针对粒子群算法用于高维数、多局部极值点的复杂函数寻优时易陷入局部最优解现象,提出一种改进的带扰动项粒子群算法并进行收敛性分析。算法中引入进化速度因子,当粒子进化速度低于一定值时在粒子速度更新方程中添加扰动项使粒子逃离局部最优区而继续搜索。对几个复杂函数的寻优测试表明:改进算法的收敛速度、收敛精度和全局搜索性能均有显著提高。将本方法用于建立丙烯腈收率神经网络软测量建模,研究结果表明模型精度较高、泛化性能好,满足现场测量要求。  相似文献   

2.
《河南科学》2016,(12):1956-1960
针对粒子群优化算法容易陷入局部极值、进化后期早熟收敛现象,提出了一种带有个体扰动和相互学习改进的粒子群优化算法.算法在迭代的过程中,根据群体适应度方差按照一定的概率对当前的个体最优粒子进行扰动,增强了算法的局部探索的能力,使得粒子跳出局部最优点;同时增加粒子的相互学习阶段,使得每个粒子的进化不仅受到个体最优粒子和全局最优粒子的影响,而且还受到其他粒子之间相互学习的影响,提高了算法的收敛速度.数值实验表明,改进的新算法具有更高的收敛速度和收敛精度,能有效克服早熟收敛现象.  相似文献   

3.
粒子群优化算法的惯性权值递减策略研究   总被引:75,自引:0,他引:75  
为了有效地控制粒子群优化算法的全局搜索和局部搜索,基于递减惯性权值的基本思想,在现有的线性递减权值策略的基础上,提出了开口向下抛物线、开口向上抛物线和指数曲线3种非线性的权值递减策略,并采用Sphere、Rosenbrock、Griewank和Rastrigrin这4个标准测试函数测试这些策略对算法的影响.试验结果表明,对于多数连续优化问题,在初始权值和最终权值相同的情况下,凹函数递减策略优于线性策略,而线性策略优于凸函数策略,凹函数递减策略能够在不影响收敛精度的情况下较大幅度地提高粒子群算法的收敛速度.  相似文献   

4.
针对传统粒子群优化算法(CPSO)用于常压塔稳态操作优化时极易陷于局部极值的问题,本文应用局部扰动粒子群算法(PPSO)予以解决,并分析了操作变量按照相关性或敏感性等关系进行分组对优化结果的影响,分别给出了以提高经济效益为目标和以提高拔头油收率为目标的操作优化结果。优化测试实验表明与序贯二次规划(SQP)和CPSO相比,PPSO可以更好地优化常压塔各种工况下的目标函数,使经济收益提高4.84%或者拔头油产率提高9.31%。在此基础上计算该优化点Hessian矩阵条件数的倒数,藉此分析常压塔参数的可辨识性。  相似文献   

5.
【目的】针对标准粒子群优化算法在应用中暴露出的缺点,如在迭代后期收敛速度慢、搜索精度不高、容易陷入局部最优等,提出一种基于扰动的自适应粒子群优化算法。【方法】该算法将扰动因子加入速度更新公式中,使种群搜索范围扩大;采用自适应的惯性权重,以起到平衡全局和局部寻优能力的作用;对最优粒子进行自适应的柯西变异,拓展最优粒子的搜索空间,降低粒子陷入局部最优的可能性;最后对算法进行仿真实验。【结果】新算法能够增强全局搜索能力,有效避免局部最优,具有更快的收敛速度。【结论】新算法克服了标准粒子群优化算法的缺点,为进一步研究粒子群优化算法的改进和应用提供科学依据。  相似文献   

6.
全局粒子群优化算法   总被引:1,自引:0,他引:1  
针对粒子群优化算法在解决大维数的无约束优化问题时具有较差的收敛性和稳定性,提出了一种全局粒子群优化(GPSO)算法.GPSO算法引入了一种新的惯性权重,它被定义为一个指数型函数与一个随机数的乘积,这有利于维持算法的全局搜索和局部搜索.同时,GPSO算法对全局最优解进行了小的扰动,这可以有效地避免算法早熟.使用三种粒子群优化算法来解决6个无约束优化问题.仿真结果说明,与其他两种粒子群优化算法相比,GPSO算法具有更快的收敛速度和更强的逃离局部最优的能力.  相似文献   

7.
将禁忌搜索思想引入粒子群优化算法中,改进惯性权重,添加罚函数重新构造适应度函数;在此基础上,提出了一种基于禁忌搜索的新的混合粒子群优化算法(NHPSO),通过4个标准测试函数实验,结果表明:NHPSO算法比基本粒子群优化算法(PSO)具有更好的全局寻优能力、更快的收敛速度以及获得更高精度解的能力。  相似文献   

8.
粒子群优化算法收敛性分析   总被引:8,自引:0,他引:8  
对粒子群优化算法的收敛性进行了分析,给出了收敛条件,数值试验计算验证了收敛性分析结果。讨论了粒子群优化算法参数选取的基本原则。  相似文献   

9.
针对粒子群算法在寻优中存在早熟和收敛精度不高等问题,论文对粒子位置的更新策略以及更新公式进行改进,提出了一种新的简化粒子群优化算法(New Simple Particle Swarm Optimization,NSPSO),并将其在15个多极值基准函数进行全局最优化测试,实验结果表明,NSPSO算法收敛的精度大大提高了,而且算法收敛速度也很快,对于高、低维复杂函数的优化均适用.  相似文献   

10.
针对粒子群优化算法易于陷入局部最优解并存在早熟收敛的问题,提出了一种基于双子群的改进粒子群优化算法(TS-IPSO),通过2组搜索方向相反的主、辅子群之间的相互协同,扩大搜索范围,借鉴遗传算法的杂交机制,并采用惯性权值的非线性递减策略,加快算法的收敛速度和提高粒子的搜索能力,降低了算法陷入局部极值的风险.实验结果表明该...  相似文献   

11.
提出一种搜索空间自适应的自适应粒子群优化算法.该算法对不同等级的粒子适应值采取不同的惯性权重,并随着算法的迭代不断缩小粒子群的搜索空间.同时,选择当前代的较优部分粒子直接进入下一代,其他粒子通过在缩小的搜索空间内随机生成,加快了种群收敛速度,同时又能使种群不断跳出局部最优解.几种典型函数的仿真实验表明,该算法在收敛速度...  相似文献   

12.
一种自适应调节粒子群优化算法的研究   总被引:2,自引:0,他引:2  
针对粒子群优化算法容易出现早熟收敛和稳定性低的现象,提出一种自适应调节的粒子群算法.算法中通过自适应调节适应度值的均匀分布保持种群的多样性,该策略能够提高算法的全局搜索能力,同时可避免阈值对算法稳定性的影响.另外采用自适应周期性变异的惯性权重对粒子的速度进行更新,可改善算法的局部搜索能力和稳定性.使用多维标准函数对改进的算法进行仿真试验,结果表明,算法具有较好的全局搜索精度和稳定性,避免了早熟收敛.  相似文献   

13.
一种改进的粒子群优化算法   总被引:2,自引:1,他引:2       下载免费PDF全文
提出了一种改进的PSO(粒子群优化)算法,该算法在基本PSO算法的粒子位置更新公式中增加了一个积分控制项,积分控制项根据每个粒子的适应值决定粒子位置的变化,改善了PSO算法摆脱局部极小点的能力。另外,在该算法中粒子行为是基于个体极值中心点和全局极值点确定的,这使得粒子能够获得更多的信息量来调整自身状态。用3个基准函数对新算法进行了实验,结果表明新算法优于已有的一些改进PSO算法。  相似文献   

14.
简化的自适应粒子群优化算法   总被引:2,自引:0,他引:2  
对基本粒子群优化算法作了一些改进:通过去掉速度因子简化算法结构,引入指数下降形式的惯性权重,对全局极值进行自适应的变异操作,进而提出一种简化的带变异算子的自适应粒子群优化算法。通过与其他改进的粒子群算法的数值实验对比分析,表明提出的新算法能够有效地避免早熟收敛问题,并能较大幅度地提高收敛速度和收敛精度。  相似文献   

15.
胡旺等人在2007年提出了一种简化粒子群优化算法,基于他的思想,我们给出一个简化自适应粒子群优化算法,在该算法中权重采用标准粒子群算法的自适应权重公式,但是权重的最大值根据解的进化情况不断更新,解改进的成功率的越大权重最大值增大,反之,解改进的成功率的越小权重最大值减小.最后,通过几个典型例子对给出的算法进行检验并与其...  相似文献   

16.
为了提高粒子群优化算法的局部搜索能力、算法的收敛速度和解的精度,提出了一种改进的混合粒子群优化算法。采用聚类方法和混沌初始化、同时引入线性组合式局部搜索过程,通过四个标准函数的测试实验,与标准粒子群优化算法、混沌粒子群优化算法进行比较分析,提出的算法寻找全局最优解的能力有显著的提高,算法收敛速度和解的精度均优于其它参与比较的算法。  相似文献   

17.
提出了两种改进的粒子群优化算法--引入了"预筛选"机制的PSPS0和线性改变最大速度vmax的LCVPSO,仿真实验表明,PSPSO和LCVPSO比标准PSO算法具有更好的性能.  相似文献   

18.
文化粒子群优化算法   总被引:3,自引:0,他引:3  
为了提高粒子群优化(PSO)算法的计算精度和计算效率,避免"早熟",给出了文化粒子群优化算法.该算法模型将PSO纳入文化算法框架,组成基于PSO的主群体空间和知识空间,两空间具有各自群体并独立并行演化.下层主群体空间定期贡献精英个体给上层知识空间,上层知识空间经演化后,定期贡献精英个体给下层主群体空间,于是形成"双演化双促进"机制,从而实现增加PSO的群体多样性.在以卫星舱和印刷电路板布局设计为背景的算例中进行了数值验证,结果表明对于该算例,该方法的计算精度和计算效率比遗传算法、PSO算法高.  相似文献   

19.
为了改善量子粒子群优化(QPSO)算法、提高其求解多峰优化问题的能力,采用新的粒子吸引点和势阱特征长度计算方法,引入遗传算法中的交叉算子并融入交叉概率自适应的参数控制技术,设计了一种带交叉算子的量子粒子群优化(CQPSO)算法.CQPSO算法既可确保QPSO粒子群体的多样性、维护粒子整体的活力性,又能克服特殊情况下QPSO算法收敛的不稳定性和陷入局部最优的偶发性.实验结果表明,在21个标准测试函数中,无论对应单峰函数、多峰函数或是偏移、旋转函数,在相同的物理仿真平台上,CQPSO算法的性能在绝大多数情况下都优于其他改进的量子粒子群算法,从而验证了CQPSO算法的有效性和鲁棒性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号