共查询到18条相似文献,搜索用时 78 毫秒
1.
余跃玉 《西北师范大学学报(自然科学版)》2023,(5):19-23
扩散方程在物理领域常用来模拟不同物质间的相互扩散现象,多项时间分数阶扩散方程能更清晰地反应复杂系统的物理意义.本文对两项时间分数阶扩散方程中的分数阶导数直接进行离散,空间导数采用中心差分格式进行离散,提出了求解两项时间分数阶扩散方程的一个隐式差分格式;讨论了分数阶扩散方程差分解的存在唯一性,证明了差分格式的稳定性及收敛性;最后数值试验验证了格式的有效性. 相似文献
2.
余跃玉 《安徽大学学报(自然科学版)》2023,(5):1-7
含有Caputo型分数阶导数的微分方程在进行数值求解时,常常会用到前面各时间层的数据,这不仅使得运算的复杂性加大,更加剧了数据储存的难度.对时间分数阶粘弹性方程中的Caputo型导数,利用Laplace变换,构建了一种高效的数值格式,论证了该格式数值解的存在唯一性、数值解法的稳定性和收敛性,最后用数值实验验证了格式的有效性. 相似文献
3.
余跃玉 《北华大学学报(自然科学版)》2019,20(1)
对流扩散方程的研究大多局限于常扩散系数或整数阶的范围,为了能更加精确的描述溶质的运动特征,将它拓广到变扩散系数的情形,用Caputo型分数阶导数取代时间上的整数阶导数.对这种变系数时间分数阶对流扩散方程建立了一种隐式的有限差分格式,证明了该格式差分解的存在唯一性,分析了差分解的收敛性和稳定性,并用数值实验验证了此差分格式的有效性. 相似文献
4.
5.
张艳敏 《贵州师范大学学报(自然科学版)》2014,(3):55-57
给出了求解时间分数阶时滞抛物方程的一种数值解法,就是将传统的时滞抛物型方程中对时间的一阶导数利用α(0α1)阶导数来代替,证明了差分格式是无条件收敛和稳定的,利用数值算例验证该方法是有效的。 相似文献
6.
将2次插值和Kansa方法结合应用于求解时间分数阶扩散方程,选择多重二次函数(multiquadric,MQ函数)作为径向基函数.在离散过程中,将Kansa方法用于离散空间导数,用线性插值和3点2次插值来近似Caputo型时间分数阶导数.最后讨论了数值算例的数值解,通过实验得出数值解与解析解之间的误差较小、整体稳定性好,从而验证了该方法求解分数阶扩散方程的有效性、可行性和准确性. 相似文献
7.
沈淑君 《莆田高等专科学校学报》2011,(5):5-9
考虑变时间分数阶扩散方程。首先利用分段线性插值法结合对一阶时间导数的一个二阶近似离散Coimbra变时间分数阶导数,然后利用Richardson外推法改进精度,最后用数值例子来验证提出的数值方法,从而说明数值方法的有效性。 相似文献
8.
《山东师范大学学报(自然科学版)》2016,(3)
近似特别解(MAPS)是一种基于径向基函数(RBFs)插值的无网格方法.本文采用近似特别解法来解决变时间分数阶扩散方程,在离散过程中,用有限差分法离散时间分数阶导数,用近似特别解法离散扩散项,选择薄板样条函数作为径向基函数,并把所得结果和MQ插值函数进行对比.数值结果表明在解决变时间分数阶扩散方程时,薄板样条函数所得结果比MQ函数结果更稳定,同时避免了形参c的选择,且有较高的精度和计算效率. 相似文献
9.
变时间分数阶反应扩散方程的数值分析 总被引:1,自引:0,他引:1
考虑时变分数阶反应扩散方程的数值逼近问题。采用分段线性插值法结合对一阶时间导数的一个二阶近似离散Coimbra时变分数阶导数,用中心差分离散二阶空间分数阶导数通过数值例子验证了提出的数值方法,说明了数值方法的有效性。 相似文献
10.
研究了一个扩散系数与空间变量相关的一维空间-时间分数阶扩散方程的定解问题。基于Riemann-Liouville意义下空间导数和Caputo意义下时间导数的离散,提出了一种求解方程的隐式差分格式,验证了这个格式是无条件稳定,并证明了它的收敛性,其收敛的阶为O(τ+h),最后给出了数值例子。 相似文献
11.
张艳敏 《曲阜师范大学学报》2014,(3):17-20
利用非标准有限差分法给出了求解一类时间分数阶线性扩散方程的一种数值解法.对时间分数阶导数和整数阶空间导数离散后的差分近似过程中,对分母构造了一个关于时间步长和空间步长的函数来近似,证明了该差分格式是收敛和稳定的,通过数值算例验证该方法是有效的. 相似文献
12.
结合非标准有限差分格式给出了求解分数阶薛定谔方程的一种数值解法,对时间导数离散后的分母构造了一个关于时间步长的函数来近似,证明了该差分格式是无条件收敛和稳定的.数值算例表明该方法不仅有非常好的收敛性和稳定性,还有较高的精度,因此该方法是有效的. 相似文献
13.
考虑了一类具有Neumann边界的时间分数阶扩散方程源项反演问题.首先,从分离变量法出发将反问题归结为第1类Volterra积分方程,从而揭示出反问题的不适定性; 其次,为了获得反问题的条件稳定性,通过分数阶数值微分将第1类Volterra积分方程转化为第2类Volterra积分方程,建立源项反问题的条件稳定性和误差估计; 最后,引进磨光正则化,获得稳定的分数阶数值导数,将其代入求解第2类积分方程,从而稳定地重建出仅依赖时间变量的源项.数值实验结果验证了所得反演算法的有效性. 相似文献
14.
15.
给出了一类时间分数阶延迟微分方程的一种数值解法,将传统的对时间的一阶导数利用α(0<α<1)阶导数来代替,证明了该格式的收敛性与稳定性,利用数值算例验证该方法是有效的. 相似文献
16.
提出一种求解Riesz空间分布阶的分数阶扩散方程的数值方法.利用辛普森数值求积公式,将分布阶微分方程离散为一个多项分数阶导数的微分方程;利用四阶差分格式求解此具有多项分数阶导数的微分方程,并运用能量法分析数值格式的稳定性和收敛性.同时,给出数值例子,说明所建立的数值离散格式的有效性. 相似文献
17.
给出了求解一类时间分数阶时滞微分方程的数值解法,将传统对时间的一阶导数利用分数阶导数α(0α1)阶导数代替,给出了求解微分方程的差分格式,并对差分格式证明了收敛性和稳定性,数值算例检验该格式解决此类方程是有效的. 相似文献
18.
给出了变系数的空间分数阶扩散方程的一种加权显式有限差分方法.证明了该方法是条件稳定和条件收敛的,而且在空间可以达到二阶精度.最后给出数值例子. 相似文献