首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
盾构隧道因具有拼接特性,在非对称外荷载作用下易产生纵向不均匀扭转。过量的不均匀扭转将导致管片和螺栓产生较大应力和变形,并发生环缝错位和轨道倾斜,严重影响隧道安全,但目前工程界对隧道扭转问题的认识和关注仍不足。为研究盾构隧道纵向抗扭性能,首先,基于等效连续化模型和力平衡方程,推导不同受力组合状态下的盾构隧道纵向等效抗扭刚度计算方法;其次,将抗扭刚度的解析解与有限元模拟结果进行对比,验证提出的抗扭刚度解析方法的有效性。最后,分析管片厚径比、宽径比、螺栓剪切长度以及隧道纵向轴力和弯矩等对抗扭刚度的影响,并给出隧道自抗扭临界荷载(N0,M0)包络图。研究结果表明:隧道纵向抗扭刚度有效率随着管片厚度与直径之比增大而减小,而随着管片环宽与直径之比增大而增大;盾构隧道纵向抗扭刚度有效率随着螺栓的等效剪切长度增大而减小;螺栓等效剪切长度仅影响环缝的扭转变形,而对接缝中性轴、扭转中心位置等没有影响;盾构隧道纵向抗扭刚度有效率随着压扭比或弯扭比增大而增大。设计中控制合理的压扭比与弯扭比对隧道抗扭十分重要。建议将螺栓增大预紧力或采用预应力管片结构视为提升盾构隧道抗扭性能的有效措施。  相似文献   

2.
矩形盾构隧道纵向等效抗弯刚度是衡量隧道受力变形的重要参数,对于指导施工及隧道纵向结构设计具有重大意义。将横向刚度与纵向等效抗弯刚度联立起来,由力学平衡条件确定中性轴位置,根据弯矩平衡条件及等效连续梁转角公式推导得到大断面矩形盾构隧道纵向等效抗弯刚度解析解,并探讨了管片宽厚比、长短边螺栓分布、管片厚度等对纵向等效抗弯刚度的影响。研究结果表明:截面长宽比由1增长100%时,隧道纵向等效抗弯刚度有效率η由2.787 5降低为原来的15.3%,最终值为0.426 2;中性轴距离c减小了49.6%,最终值为2.273 0 m;截面厚度t由0.25增长到0.55时,中性轴距离c由2.188 5 m降低0.62%,纵向等效抗弯刚度有效率η由0.099 m增加7.8%;长短边厚度比由1增长到2时,中性轴位置c由2.174 9 m增长0.34%,纵向等效抗弯刚度有效率η由0.106 7降低了21.27%;截面螺栓个数从30增加到80时,c由2.150 4增长1.43%,纵向等效抗弯刚度有效率η由0.121 6降低了12.25%。考虑螺栓分别沿隧道截面长短边均匀分布时,纵向等效抗弯刚度及抗弯刚度有效率大约为理想情况下螺栓均匀化分布时的2/3。在截面螺栓总数不变的前提下,适当降低截面短边螺栓所占比例可有效提升截面抗弯性能。  相似文献   

3.
大断面异形盾构衬砌结构纵向力学性能   总被引:1,自引:0,他引:1  
首先通过建立异形盾构三维有限元计算模型研究了多种因素对异形盾构纵向力学性能的影响,数值结果表明,异形盾构纵向整体向下位移、变形模式符合三次多项式形式;纵向刚度有效率随横向刚度有效率的增加先减小后增大,但纵向刚度受横向刚度的影响较小,异形盾构横向刚度有效率设计建议值为0.65;纵向刚度有效率随埋深增加而减小,错缝拼装能明显提高异形盾构的纵向刚度;纵向刚度有效率随基床系数的增加呈线性增长,其对异形盾构纵向刚度的影响最为明显;纵向螺栓预紧力对纵向刚度有效率的影响呈线性增加关系,但对异形盾构纵向刚度的影响并不明显.基于实测环缝张开量值建立了适用于异形盾构的纵向等效刚度和纵向刚度有效率简化解析模型,解析模型计算结果与数值计算结果吻合,证明该理论模型的有效性.  相似文献   

4.
不同埋深下大直径盾构隧道横向刚度有效率   总被引:1,自引:1,他引:0  
盾构隧道衬砌结构整体性能受到纵缝及环缝接头不连续性的影响,接头受力状态随埋深变化发生改变,其刚度也将发生变化,进而引起结构整体刚度的改变,对于大直径深埋盾构隧道这一影响更为突出.基于该问题,以上海沿江通道越江隧道典型衬砌结构为例,采用横向变形等效原则,参考管片接头结构试验结果,研究大直径盾构隧道横向等效刚度随埋深而变化的规律,并考察了地基刚度与错缝拼装对于计算结果的影响.结果表明,大直径盾构隧道的横向刚度有效率与埋深有较大关联,覆土较浅时变化规律相对复杂,覆土厚度超过1.0倍直径后随埋深整体上呈现先递增而后递减的趋势,在埋深达到2.0倍直径后由于地层成拱效应不再继续降低,上述规律还受到地层条件的影响.研究成果对于大直径盾构隧道的设计与计算具有一定的参考价值.  相似文献   

5.
邓博团  申超凡 《科学技术与工程》2022,22(29):13028-13036
为研究直螺栓连接预制管廊的纵向受力性能,引用隧道纵向刚度计算的纵向等效连续化模型,对其进行改进,使其适用于直螺栓连接的预制管廊,从而得到考虑螺栓预应力影响的纵向等效拉压刚度和弹性弯曲刚度。求得了预制管廊在弹性极限弯矩作用下,截面最大拉应力、截面最大压应力、接头最大变形、接头螺栓最大拉应力和接头螺栓最大变形的表达式。运用所得表达式,结合工程实例参数,分析了管廊截面尺寸、管壁厚度、节段长度和螺栓个数对其受弯矩作用时中性轴的位置和纵向等效刚度的影响程度和趋势。结果表明,管廊抗弯刚度受截面宽高比影响较大;通过增加管壁厚度来提高管廊等效刚度的方法不经济;在满足设计要求条件下,适当增大预制节段的长度和增多连接螺栓数量可以有效提高管廊的纵向刚度,并能够很好的改善管廊截面受力状态,同时不失经济性,为直螺栓连接预制拼装管廊结构的设计合理性和工程适用性提供理论支持。  相似文献   

6.
基于大断面类矩形盾构隧道衬砌结构原型加载试验,通过在原型试验管片领域引入三维激光扫描设备获取管片内弧面三维形变数据,对类矩形盾构管片形变、横向和水平向横向刚度有效率进行研究.给出了自重状态和设计状态下类矩形盾构管片横向刚度有效率值,分析了类矩形盾构管片形变和横向刚度有效率随覆土埋深和侧压力系数增加的变化规律,揭示了极限破坏工况条件下管片结构形变和横向刚度有效率的两阶段线性特征.通过壳-弹簧模型详细对比了类矩形和圆形管片形变和横向刚度有效率的异同点,证明了结构自重在反映类矩形盾构管片整体结构刚度上的重要影响.  相似文献   

7.
盾构机掘进过程中,千斤顶顶进力的不均匀引起的纵向位移是管片间初始错台的主要原因之一;基于Timoshenko梁理论的隧道纵向位移计算方法,未能考虑隧道开挖后围岩卸载破坏的变形特征及围岩与衬砌结构的协同作用效应,预测误差较大。建立了考虑围岩卸载扩容效应的等效地基抗力系数计算方法,提出了能考虑螺栓个数的等效抗剪刚度计算公式,建立一种基于Timoshenko梁理论的改进管片拼装式隧道纵向位移理论计算方法。实际工程案例分析表明:考虑围岩开挖卸载过程中围岩的非线性体积相关塑性变形(即扩容效应)更合理;考虑壁后注浆液固化过程的时效性,采用改进的滑移边界条件计算的纵向位移最大值是传统的固定端边界的计算值的2.3倍,边界条件对计算结果影响较大,本文计算方法更符合实际情况,也更安全。  相似文献   

8.
为了探讨盾构隧道结构在纵向地震动力作用下盾构管片的振动特性。通过将土-结构相互作用简化为等效刚度弹簧建立了模型,并推导了结构在地震作用下的运动方程。然后利用中心差分法求解所得到的运动方程,求得每段管片在不同时刻的位移。进一步研究了土-结构剪切系数、地震纵波速度和结构连接刚度3个因素对隧道盾构管片位移的影响。计算结果表明,随着土-结构之间剪切系数增大,管片最大位移随之增加,结构之间的相对位移减小。而降低结构之间的连接刚度后,土-结构之间的相对位移减小。波的传播速度越小,结构与地层之间相对位移越大,易导致滑移现象出现。因此,选取具有较快波速的坚硬地层、提高土与结构之间的剪切力以及设置合理的抗震缝距离将有助于增加结构的抗震性能。  相似文献   

9.
为了研究不同隧道埋深对围岩应力变形和塑性区发展趋势的影响,对TBM法掘进隧道时的围岩稳定性进行有限元数值分析,分析不同埋深条件对围岩应力变形和塑性区发展趋势的影响。计算结果表明,随着埋深的增加,应力、位移、塑性区、发生岩爆的几率都有不同程度的增加。地应力以构造应力为主,洞周不存在拉应力区,塑性区呈环状分布。当埋深较大时,进行管片收敛变形计算时采用MC准则要优于DP准则,当侧压系数增大时,管片应力变形有不同程度的增加。掌子面附近管片收敛较小,往洞口方向收敛变形值逐渐增大,在距掌子面500 m之外的管片收敛变形趋于稳定。  相似文献   

10.
基于接头断面的不均匀变形、接头细部构造分析在正、负弯矩作用下接头分离前后的力学特性,分别给出管片环向接头的抗拉刚度和抗弯刚度在接头分离前后的非线性解析公式,以及接头抗压刚度和抗剪刚度的线性解析公式。在此基础上,得到不同管片厚度和螺栓等级工况下线性接头和非线性接头模型的转角与弯矩的关系,并对线性接头模型和非线性接头模型的内力和变形特性进行对比分析。研究结果表明:在接头分离前,其抗弯刚度随管片厚度增大而增大;在接头分离后,接头抗弯刚度急剧减小,但不同管片厚度下的接头抗弯刚度分布规律大致相同;随着螺栓等级提高,接头分离时的突变转角与弯矩逐渐增大;在正弯矩作用下各等级螺栓的弯矩增量比负弯矩作用下的弯矩增量大,但各等级螺栓的转角增量要比负弯矩作用下的转角增量小;在荷载作用下,隧道管片弯矩随螺栓等级提高而逐渐减小;螺栓等级提高对线性与非线性模型的轴力影响较小,管片厚度变化对线性和非线性模型的剪力影响较小,但线性和非线性模型管片的剪力随螺栓等级提高而减小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号