首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
基于PFC中FISH语言,采用双线性锚杆本构模型对岩体加锚节理面在剪切荷载作用下的力学行为进行数值模拟研究,通过变化锚杆刚度和浆体强度,深入研究岩体结构面-浆体-锚杆相互作用下锚固体系宏细观力学响应。结果表明:加锚节理面的力学响应与锚固结构的力学性质密切相关。锚杆刚度越大,节理面宏观抗剪强度越高;随着锚杆刚度的增加,岩体和浆体中的裂纹也越来越多,锚杆对浆体和岩体的损伤逐渐增加。岩体结构面-浆体-锚杆相互作用,裂纹的产生首先起于节理面上和锚杆与节理面交叉处,随着剪切位移的不断增加,节理面上的裂纹在接触力集中的地方继续产生,而在锚杆周围则由锚杆与节理面交叉处向锚杆两端继续扩展,且裂纹集中在锚固体系的受压侧,主要为由"压致拉"机理导致的张拉裂纹。浆体的强度过小或过大都可能导致锚固体系中裂纹数量的增多,且裂纹以张拉裂纹为主。当浆体强度较低时,裂纹主要集中在浆体中,而当浆体强度较高时,裂纹主要集中在岩体中。因此,在对节理岩体进行加固的过程中,应综合考虑节理面宏观上的抗剪强度和细观上锚固体系的损伤,以实现锚固体系的宏细观耦合支护。分析结论对于节理岩体的锚固支护设计具有参照价值。  相似文献   

2.
为研究锚固巷道围岩结构面的剪切特性与破坏特征,采用FLAC3D软件建立粗糙锚固结构面数值模型开展剪切试验,对锚固系统的剪切特性以及受力变形和破坏特征进行了系统研究。结果表明:锚杆能够有效提高结构面的抗剪能力,锚固系统的剪切应力在峰值位移处提升了0.33 MPa,在剪切结束时提升了0.93 MPa。锚杆所受剪切应力集中在结构面附近,锚杆所受的轴力在结构面两侧呈两组对称分布的压应力区和拉应力区。锚杆在结构面处的剪切应变较大,拉应变次之。锚固剂-围岩界面和锚杆-锚固剂界面的剪切应力在结构面处最大,锚杆-锚固剂界面所受剪切应力和受力范围更大。塑性破坏主要产生在锚杆与结构面相交处和结构面凸起处,锚固剂多是发生拉伸破坏,围岩则多是发生剪切破坏。锚杆-锚固剂界面更容易发生脱离,导致锚固系统失效。  相似文献   

3.
树脂锚杆锚固段剪应力分布及其损伤模式分析   总被引:1,自引:0,他引:1       下载免费PDF全文
为了分析树脂锚杆锚固段剪应力分布及其承载、损伤机理,提高树脂锚杆支护在煤矿现场应用的有效性,首先根据煤矿树脂锚杆的围岩环境和受力特点,基于集中载荷作用于半无限体表面和无限体内部的弹性力学解得到了树脂锚杆在非锚固段围岩破碎和完整时的锚固段锚固界面剪应力计算式,分析了锚杆杆体拉力在锚固段锚固界面的剪应力形成机理;然后采用FLAC数值模拟软件模拟了树脂锚杆锚固段的承载及变形,得到了树脂锚杆在一定载荷和围压作用下锚固界面塑性发展趋势;最后以混凝土试块模拟围岩,并在混凝土试块预留孔中锚固了树脂锚杆进行实验室拉拔试验,得到了树脂锚杆锚固段剪应力分布及其增加趋势.结果表明,树脂锚杆剪应力开始时呈负指数形态分布,随着锚杆拉应力的增大,锚固起始端剪切破坏剪应力降低,无围压时峰值剪应力迅速向较深部锚固界面移动并锚固失效,有围压时锚固界面在锚固起始端剪切破坏后仍有较大的锚杆拉应力发展范围.  相似文献   

4.
为了研究不同粗糙度下锚固节理岩体的破坏特征和锚固机理,利用二维颗粒流程序PFC2D生成6种不同粗糙度的锚固节理面,并对这6种粗糙度的锚固节理模型在5种法向荷载下进行剪切实验,探讨JRC值和颗粒摩擦因数对锚固节理抗剪强度的影响。并从宏细观角度分析不同节理粗糙度的形貌破坏和裂纹扩展演化特征。研究结果表明:当剪切试验中节理面的微凸体没有发生太大的破坏时,锚固体系的峰值剪切强度随粗糙度的增加而不断变大,但是当微凸体剪断破坏后峰值抗剪强度会有小幅的衰减,同时随着节理面摩擦因数的增加,锚固体系的峰值剪切强度也相应变大,并呈现很好的线性关系;细观裂纹开始主要在节理面的微凸体处产生,随后在锚杆周围快速大量产生,并且逐步扩展到模型的内部,产生的裂纹以张拉裂纹为主;锚固节理上的颗粒间接触力的数量和方位角的分布区域随剪切过程的进行逐渐衰减,并且接触方位角逐渐向剪切荷载施加的方向发生偏转。  相似文献   

5.
为研究节理岩体在压缩荷载作用下的力学响应,基于岩体结构力学观点,把节理岩体在压缩荷载作用下的变形视为岩块变形与节理面变形的叠加,分别采用基于统计损伤模型的弹性损伤变形元件和考虑节理面闭合及滑动的变形元件计算岩块和节理面在压缩荷载作用下的变形,进而建立相应的节理岩体压缩损伤本构模型。并利用该模型讨论节理面弹性模量、最大闭合应变及剪切刚度等对计算结果的影响规律。最后利用该模型对含单条贯通节理的岩体在压缩荷载作用下的应力-应变曲线进行分析计算。研究结果表明:对于可能沿节理面发生剪切滑移的岩体而言,节理面剪切刚度对计算结果的影响最为显著。对本算例而言节理岩体的峰值强度仅为完整岩体的51.5%,反映节理对岩体强度的弱化效应。同时利用该模型得出岩体强度随节理倾角呈现出抛物线变化规律,即当节理倾角在50°~60°之间时,岩体强度最低,该结论与目前的理论及试验研究结果相吻合,从而说明该模型的合理性。  相似文献   

6.
本文在岩体节理面剪切蠕变试验和完整岩石扭转蠕变试验的基础上,探讨了多组节理岩体的剪切变形规律、各向异性性态及其时间效应,用试验论证了对节理面采用所建议的“弹-粘塑性”力学模型的正确性,分别推导了在不同应力状态下节理面、完整岩石和多组节理岩体粘塑性应变速率的计算公式,提出了节理岩体大断面洞室考虑分步开挖和不同支护时间的粘弹塑性有限元数值方法.通过对某地下工程实例的计算,得出多组节理岩体洞室稳定的定景分析和评价,以及工程设计和施工的若干合理化建议.  相似文献   

7.
根据拉格朗日法能模拟材料的屈服、塑性流动、软化直至大变形的特点,从变形-锚固的角度分析了加锚节理岩体的锚固效应。所得成果对边坡的锚固设计及稳定性评价具有指导意义。  相似文献   

8.
为了探究加锚节理岩体的力学特性,采用水泥砂浆制作了倾角60°的加锚非连续节理试样,并开展单轴压缩试验,系统分析加锚非连续节理试样的力学特征、破坏模式和锚杆的变形特性。研究结果表明,锚杆数量显著影响节理试样峰后“应力降”特征,抑制破坏速度和剧烈程度;随着锚杆数量增加,非连续节理试样峰值强度、残余强度提高,锚杆数量为6和9时增幅较明显,锚固效果较好,最佳锚杆数量为6;非连续节理试样的破坏模式均以沿节理面的剪切滑移破坏为主,且存在多个节理破坏面,但随锚杆数量的增加,破坏面间的张开度减小,竖向劈裂逐渐增强。此外,非连续节理试样中锚杆以发生弯折、剪断为主,锚杆较多时,弯折变形量减小,剪断现象减弱。  相似文献   

9.
借助通用结构分析软件ANSYS深入地对可回收机械式锚固锚杆的作用机理进行了研究,探讨了锚杆作用对锚固体应力与变形状态的影响以及锚杆对锚固体的作用范围,比较了不同类型锚杆的作用效果。  相似文献   

10.
全长锚固锚杆主要用于变形较大的软弱岩体中,以控制岩体的塑性变形。允许一定范围塑性区的存在,具有较大的技术经济意义。其锚杆长度以不超塑性区为宜。本文分析了全长锚固锚杆——围岩相互作用机理,提出了工程实践较实用的极限设计准则和方法。图3  相似文献   

11.
针对地震作用下全长黏结锚杆锚固岩质边坡锚杆-砂浆界面上和砂浆-岩体界面上,即两锚固界面上的剪切作用,利用FLAC3D软件分别采用实体单元和接触面单元建立含软弱层锚固顺层岩质边坡数值模型,探究了水平向简谐波作用下两锚固界面上的剪切作用和锚杆轴力分布以及它们的演化规律。结果表明:采用实体单元和接触面单元相结合的建模方式可行,锚固界面剪切作用和脱黏破坏均可得到很好的体现和反映,两锚固界面上的剪应力和锚杆轴力的分布不均匀,软弱层处剪应力为零而轴力最大;随地震动持续输入,两锚固界面剪应力和锚杆轴力呈递增之势,锚固界面发生脱黏破坏并向锚杆两端发展,远离中性点的锚固界面得以调用,峰值剪应力向锚杆两端转移。揭示了地震作用下含软弱层锚固顺层岩质边坡破坏机理,对岩土锚固的研究和设计施工均具有重要意义。  相似文献   

12.
基于岩体结构力学观点,将岩体看作是由岩块和结构面组成的复合体,分别采用基于统计损伤模型的弹性损伤变形元件和考虑结构面闭合及滑动的变形元件描述岩块和结构面在压缩荷载作用下的变形规律,进而建立相应的节理岩体压缩损伤本构模型。其次,针对上述损伤本构模型中最大拉应变破坏准则不适合于描述三向受力状态下岩石破坏的不足,基于Mises屈服准则推导出三向应力状态下的最大主应变与围压之间的关系,进而将该模型推广至三维情形。最后,通过算例对该模型的合理性进行验证。研究结果表明:该模型能够较好地反映围压对节理岩体试件强度及变形的影响规律,即随着围压增加,节理岩体试样峰值强度增加,而试样破坏时的最终应变减小。  相似文献   

13.
利用数值计算软件FLAC3D建立层状岩体边坡的稳定性分析模型,采用锚杆单元对岩体边坡进行加固模拟,得到加固后岩体的变形情况以及锚杆的受力情况.研究结果表明:边坡的破坏形式为明显的直线型滑动破坏,滑块的位移从上到下逐渐增大,水平位移最大处位于剪出口位置;层状边坡锚杆加固后,沿节理面发生一定的变形;各监测点位移沿自然坡倾向位置逐渐减小,越往岩体内部受到的开挖扰动越小;由于节理的存在,全长黏结式锚杆的轴力分布为多峰值曲线,峰值均出现在节理面位置;锚杆轴力最大位置可表征滑动面位置.  相似文献   

14.
以娄湘公路北侧反倾边坡为实例,采用有限差分软件FLAC3D建立数值模型,对不同锚固参数下反倾边坡的变形破坏特征和锚固力加固机理进行分析,揭示了各个参数与反倾边坡滑移变形特征的响应关系。结果表明:锚杆加固在坡底时对剪切滑移型边坡的变形起到主要控制作用,边坡抗滑移能力最高;锚杆越长,边坡变形量越小,锚杆锚固力随锚杆长度的增加而增大,边坡稳定性提高;在保持锚杆长度和锚固位置不变的情况下,锚固角增大可以使边坡锚固力增加,边坡稳定性提高,但影响很小。  相似文献   

15.
为了满足建筑功能的需求,正交方向布置的一字形墙通常被连接成一体,形成不同截面形式的带翼缘剪力墙.T形截面剪力墙作为其中最典型的墙肢组合形式,其截面的不对称性会导致不同受力方向下的变形性能和塑性铰长度存在明显差异.为了揭示T形截面钢筋混凝土(RC)剪力墙塑性铰的形成和发展机制,建立了T形墙精细化有限元分析模型.在验证模型有效性的基础上,通过分析T形墙沿高度方向的应变和曲率分布,定义了T形墙塑性铰长度的取值方法,进而分析了塑性铰长度在全过程受力中的变化规律,并结合T形墙的损伤机理和截面应变分布详细阐释了不同设计参数对塑性铰长度的影响.研究结果表明:T形墙在翼缘受拉方向的塑性铰长度主要由受压混凝土的压碎范围决定,且取值相对较小,在整个加载历程中呈现先快后慢再快的增长趋势;而翼缘受压方向的塑性铰长度完全由受拉钢筋的屈服范围决定,其增长速率呈现不断减小的趋势.基于参数分析结果,提出了一种考虑弯矩梯度、剪切效应和纵筋滑移贡献的T形墙塑性铰长度简化计算公式.通过与试验结果的比对,验证了简化公式的准确性.所提公式符合T形墙的变形特征,且可应用于L形墙.研究成果可为带翼缘面RC剪力墙基于变形的抗震设计和...  相似文献   

16.
锚固是边坡支护中的一种重要方法,目前的理论模型大都不考虑地震过程中边坡的响应状态,在边坡锚杆的锚固抗震机理方面存在一定欠缺。基于边坡及锚杆在地震作用下力的传递过程分析,提出了一种边坡锚杆动力简化分析模型;利用锚杆荷载分布解析解,分析了不同响应地震动、围岩属性等参数对锚杆受力的影响,从理论上进一步阐述了锚杆的抗震锚固机理。得到了如下结论:岩体的弹性模量和泊松比不是锚杆锚固能力的关键性因素,软岩对硬岩同样可以起到锚固支护的效果;锚杆能够提高岩体的整体性和自稳能力,对多结构面控制岩石边坡,应混合使用贯穿长锚杆和单结构面锚杆的优化锚固方式。  相似文献   

17.
锚固是边坡支护中的一种重要方法,目前的理论模型大都不考虑地震过程中边坡的响应状态,在边坡锚杆的锚固抗震机理方面存在一定欠缺。本文基于边坡及锚杆在地震作用下力的传递过程分析,提出了一种边坡锚杆动力简化分析模型;利用锚杆荷载分布解析解,分析了不同响应地震动、围岩属性等参数对锚杆受力的影响,从理论上进一步阐述了锚杆的抗震锚固机理。得到了如下结论:岩体的弹性模量和泊松比不是锚杆锚固能力的关键性因素,软岩对硬岩同样可以起到锚固支护的效果;锚杆能够提高岩体的整体性和自稳能力,对多结构面控制岩石边坡,应混合使用贯穿长锚杆和单结构面锚杆的优化锚固方式。  相似文献   

18.
文中列举作者近期完成的相似材料锚固体试验资料,探讨了全钻孔胶结式锚杆在均质及节理岩体中的作用机理,研究了不同因素对试块强度增长系数的影响,指出了锚杆长度与密度的合理范围,论证了节理岩体中先锚后注的优越性。  相似文献   

19.
节理、断层等结构面造成岩体变形的不连续性,并且对岩体变形、应力等造成重要影响.基于节理岩体隧道概念模型,应用离散元程序计算分析完整岩体、1条和2条节理对岩体隧道位移和应力的影响.结果表明:随着模型隧道节理的增加,节理接触处发生应力集中现象,导致隧道内顶部位移越来越大,增幅约为25.2%,隧道底部位移场曲线由"凹"字形转...  相似文献   

20.
拉拔工况下全长粘结锚杆工作机理   总被引:15,自引:1,他引:15  
采用一种能够真实模拟锚杆和岩土体界面闭合、滑移及张开等实际变形性能的摩擦-接触型界面单元, 对照实测工程, 建立拉拔工况下全长粘结锚杆的数值模型, 并验证了模型的精度;对拉拔工况进行全过程仿真分析, 再现锚杆、界面以及岩土体的力学特性随施工全过程发展的变化规律, 定量揭示这一工况下全长粘结锚杆的工作机理;对典型岩土介质中的拉拔锚杆进行数值对比试验, 由锚杆轴力和界面剪应力不同的衰减速度反映岩锚和土钉不同的有效锚固长度, 得出: 岩体锚杆长度为1.5~2.0 m, 而土钉长度达到10.0 m左右. 所以, 土体中采用较长的土钉可以充分发挥作用, 而岩体中选取适当有效锚固长度的锚杆可充分发挥锚杆作用, 又节省成本.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号