首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
固体氧化物燃料电池是一种全固体结构的燃料电池,是当前新能源开发的主要方向之一.阳极做为燃气的电化学氧化场所对于电池性能发挥着至关重要的作用.  相似文献   

2.
采用固相反应法制备阳极支撑型固体氧化物燃料电池的阳极基底,在阳极基底中加入不同含量的造孔剂.采用SEM观察阳极微结构,并用阿基米德排水法测量阳极的孔隙率.随着阳极中造孔剂含量的增多,阳极的孔隙率增加,电池的浓差极化被消除,电池性能明显提高.但是太高的孔隙率会降低阳极结构的强度,减少三相反应区的数量,降低电池的性能.本文通过对阳极中造孔剂的含量的研究,找到了合适的造孔剂的含量.  相似文献   

3.
固体氧化物燃料电池   总被引:2,自引:0,他引:2  
论述了固体氧化物燃料电池(SOFC),分析了固体氧化物燃料电池在电介质和电极材料面的性能和特点,介绍了固体氧化物燃料电池目前的应用和发展前景。  相似文献   

4.
为了解决传统的氢气、一氧化碳等工业制气作为固体氧化物燃料电池(solid oxide fuel cell, SOFC)阳极燃料时,其在制备、存储、使用安全性等方面的问题,探究新型阳极燃料的研究及应用,以期在保证电池性能的同时实现SOFC的低碳甚至零碳排放.对当前有关SOFC新型阳极燃料的研究现状进行了调研总结,概述了SOFC的基本原理,阐明了国内外能源结构的影响.调研了低碳/零碳燃料在SOFC研究中的应用情况,包括甲烷等低碳烷烃、氨、生物质燃料、含碳类固体燃料等.在此基础上对阳极低碳/零碳燃料下SOFC联合动力系统的研究进行了概括总结,并指出了SOFC的发展方向.  相似文献   

5.
固体氧化物燃料电池阳极甲烷重整过程动力学模型   总被引:1,自引:0,他引:1  
基于甲烷蒸气重整动力学模型,结合平板型固体氧化物燃料电池阳极材料上甲烷蒸气重整实验数据,得到了镍/氧化钇稳定氧化锆阳极甲烷蒸气重整过程的有效动力学模型,并采用该模型在不同工况下得出阳极内温度分布、甲烷转化率、最大温差、碳沉积及其可能气化的位置等.结果表明:局部温度分布和甲烷转化率对工作参数非常敏感,尤其是工作温度;局部温度在多孔阳极的前部急剧下降,而后随外部电加热器的热量和水转化所释放的热量增加而逐渐回升;最大温差区域在多孔阳极的前部,最大温差及其增量随着工作温度升高而增加;工作温度对甲烷转化率具有正面影响,并呈非线性关系;较高的工作压力对甲烷蒸气重整无益;碳可能沉积的区域在阳极的前部,特别是其表面;工作温度的升高对降低碳沉积起到较大作用;碳的气化反应随S/C的增加而加快.  相似文献   

6.
稀土钙钛矿型氧化物是固体氧化物燃料电池(SOFC)研制中十分有应用前景的阴极材料,就这类材料的超细粉体制备、电阻率、热膨胀性等问题进行了讨论;采用浸渍涂覆和功能陶瓷烧结方法,在固体电解质ZrO2基体上形成了钙钛矿电极膜层;初步测试了它们的极化情况,提出过电位表达式的分解方法,获得特征值Ic,用来评价活化极化所占的比例和比较电极与电解质的性能;观察了它们作为氧浓差电池阴极的电势。  相似文献   

7.
概述固体氧化物燃料电池(SOFC)的原理,综述了ZrO2基固体电解质型燃料电池的研究进展状况,提出了一些有待解决的问题。  相似文献   

8.
根据阳极支撑平板型固体氧化物燃料电池(Solid Oxide Fuel Cell,SOFC)的工作原理,建立了SOFC的三维热流电化学模型,研究燃料电池进气方式、进气速率、燃料气组成对其温度场、燃料利用率以及电池性能的影响.结果表明,相比于反向进气方式,采用同向进气,电池温度分布更均匀,热应力更小;适当提高阴极侧空气进气速率会降低电池平均温度和热应力,同时也有利于提高电池功率密度和燃料利用率;增加燃料气的进气摩尔分数,反应速率、系统温度梯度和功率密度随之加大,由于温度梯度的增大最终导致热应力增加.  相似文献   

9.
固体氧化物燃料电池电解质用离子导体   总被引:3,自引:0,他引:3  
固体氧化物燃料电池以其高的能量转换效率和清洁的发电而被广泛研究。其中电解质--离子导体材料是影响固体燃料电池的效率和热力学稳定性的关键。作为所期望的电解质材料应满足以下要求:(1)高的离子导电,(2)低的电子导电,(3)在使用条件-热力学稳定,(4)好的综合力学性能。在一些荧石相关结构和钙钛矿塑结构的氧化物中通过掺杂和取代形成氧空位可得到高的氧离子导电性。本文介绍了一些这类离子导体材料,并讨论了它们的特性。  相似文献   

10.
采用料浆喷涂法在NiO/YSZ阳极支撑体上制备了YSZ电解质膜并将其制成固体氧化物燃料电池(SOFC)单电池,并采用CHI电化学工作站和扫描电镜(SEM)对其伏安特性、阻抗谱和电池横断面的微观结构进行了测试和研究.结果表明:电池正常工作,开路电压随温度的升高而下降,从500℃的1.054 V降到800℃的0.963 V,800℃的最大功率密度为57×10-3W/cm2;电池在较低的工作温度下电阻损失主要来自界面电阻,随温度的升高界面电阻明显降低;电解质膜的厚度约为30μm,阳极微观结构不够均匀,这是造成欧姆电阻的主要原因.  相似文献   

11.
本文初步研究了一种新型中温固体氧化物燃料电池的性能,包括工作温度、功率输出特性以及电池的稳定性等,试验结果表明,制备的PEN单电池可以在500~600℃的温度下工作,开路电压(OCV)达O.8~1.0V,电池输出功率密度可达0.1W/cm2。升高温度可以提高电池性能,同时又降低了电池的稳定性,较合适的工作温度为550℃左右。  相似文献   

12.
采用固相法制备La1-xSrxCr1-yMnyO3-δ(LSCM)固体氧化物燃料电池(SOFC)阳极材料,用TG-DTA和X射线衍射分析仪分析了LSCM材料中钙钛矿相的形成过程,用SEM、直流四探针、交流阻抗等方法对合成材料的结构与性能进行研究。研究结果表明:用固相法制备所得到的非晶产物分别在1250℃和1350℃下烧结15h都能得到单一的钙钛矿相,对LSCM样品电性能研究表明,其电子电导率随温度的升高而增加,在850℃时空气状态下的电子电导率可达29.2S/cm;LSCM交流阻抗图是有由两个半圆组成的,显示出良好的离子电导率.  相似文献   

13.
固体氧化物燃料电池电化学特性分析   总被引:1,自引:0,他引:1  
对固体氧化物燃料电池的理想电势及有效电势进行理论分析,利用有关最新发表的活化超电势、欧姆超电势和传质超电势的计算公式,对有效电势和超电势进行了计算,探讨了工作温度和燃料中水蒸汽含量对有效电势的影响.研究发现,温度对SOFC有较大影响,在电流密度较高时,工作温度越高SOFC的有效电势就越高;燃料氢气中水蒸气的含量对SOFC的理想电势和超电势都有影响,共同作用下,SOFC燃料中较小的水蒸汽含量可获得较大的有效电势.  相似文献   

14.
中温陶瓷燃料电池电解质与电极材料研究现状   总被引:2,自引:0,他引:2  
对目前用作中温固体氧化物燃料电池的电解质材料和电极材料作了简要的综述。确定了今后的研究方向是以CeO2基和BaCeO3基电解质为主,并且研究与之相匹配的电极材料。  相似文献   

15.
研究了在一个大气压和750~850℃下,具有H2S、(MoS2 NiS Ag)/YSZ/Pt和空气结构的固体氧化物燃料电池的电化学性能,发现升温有助于增强电解质的离子传导性,使电池性能变好.在750℃下,阳极通入H2S、阴极通入空气时,电池的最大电流密度和最大功率密度分别达800mA/cm^2和84mW/cm^2;在850℃下,电池的最大电流密度和功率密度分别达1750mA/cm^2和200mW/cm^2.  相似文献   

16.
为了深入掌握固体氧化物燃料电池(SOFC)的结构性能,进而提高其可靠性,在对SOFC的内部流动和电化学特性进行数值模拟,对顺流和逆流两种流动情况下板式SOFC内温度分布、电势特征和电流密度特征进行分析的基础上,将数值计算得到的温度场作为载荷施加到SOFC的热应力模型中,建立了数值模拟SOFC的有限元热应力模型,对SOFC关键结构中的三合一电极板中的热应力分布特征进行了分析研究.研究结果表明:相对于顺流形式,逆流形式燃料入口附近的温度梯度要大得多;材料间热膨胀系数的不匹配导致了热应力的产生;热应力的大小与温度分布和温度梯度密切相关.由于过大的热应力可能会导致SOFC结构开裂甚至破坏,该研究工作为SOFC单电池和电池堆的设计优化提供了重要的理论依据.  相似文献   

17.
研制出管式Pt|YSZ|Ag单体电池,设计组装了电池性能测试系统,在300~650℃范围内用甲烷做燃料气体测试了电池开路电压随温度及燃料气体流量的变化关系.发现电池开路电压随温度升高逐步增大,但增大速度在各温度段不同;电池开路电压随燃料气体流量的增加大致呈现出对数增加形式,燃料气体流量不大时开路电压增大速度很快,燃料气体流量变大后开路电压增大的速度越来越小,直至不变.  相似文献   

18.
以稀土复合氧化物La_0.7Sr_0.3CoO_3为阴极材料,YSZ为电解质,Pt为阳极,组装了H_2-O_2燃料电地.测试了电地的V-I特性曲线.结果表明,在1000℃时电池的开路电压为1.08V;最大输出功率密度的工作电压为0.54V,电流密度为150mA/cm ̄2.  相似文献   

19.
应用溶胶-凝胶法制备了中温硫化氢固体氧化物燃料电池的纳米复合质子传导膜。用SEM和EDX对纳米复合膜进行了观察和表征,并与传统工艺制备的电解膜(微米级)的性能进行了比较。探讨了微米级和纳米级的复合Li2SO4 Al2O3膜的离子传导性随温度变化规律。与传统的工艺采用相同组分制备的微米级电解膜相比,纳米复合膜的微观结构、致密性、机械强度和离子传导性均得到改善,而最显著改善是膜的离子传导性能。纳米复合Li2SO4 Al2O3膜的中温硫化氢固体氧化物燃料电池的性能较稳定,察觉不到膜两侧的气体穿过膜扩散到另一侧。在750℃和101.13kPa下,电池的最大输出功率密度为135mW.cm-2,最大电流密度为480mA.cm-2。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号