首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
ZE10 magnesium alloy was subjected to equal-channel angular pressing (ECAP) up to 12 passes in a die with an angle of 120° between the two channels at 250-300℃. An inhomogeneous microstructure of bimodal grains including fine grains of 1-2 μm as well as coarse grains of about 20μm was obtained after the initial 1-4 ECAP passes. The grain size became increasingly homogeneous with further ECAP processing and the grains were significantly refined to 1-2 ktm after 8 passes and further refined to 0.5-1 μm after 12 passes. The alloy's yield strength changed slightly but the ductility improved greatly initially up to 4-6 passes corresponding to the bimodal grain microstructure. And after the subsequent pressing of more than 8 passes, the tensile strength including yield strength improved while the elongation decreased gradually.  相似文献   

2.
在不同轴肩直径、搅拌头转速和搅拌头行进速度下,对27mm厚5083-O铝合金进行了多道次搅拌摩擦加工(multi passfrictionstirprocessing),搭接率为100%,共进行3道次搅拌摩擦加工.研究结果表明,加工区由细小的再结晶组织组成;随着加工道次的增加,加工区内部缺陷体积减少,晶粒进一步细化,析出相细化并均匀分布,力学性能提高,加工区最高抗拉强度可达360MPa,延伸率也优于母材;其中,第二道次加工对材料组织和性能的影响最为明显.  相似文献   

3.
为了加速国内双相钢的开发和应用,采用CAS-300Ⅱ模拟退火实验机,通过模拟退火实验,研究了加热速率、临界区退火温度、过时效温度、过时效时间对DP590双相钢组织性能的影响.结果表明,加热速率在5~60℃/s内增加时,屈服强度、抗拉强度均增加,延伸率、强塑积均减小;临界区退火温度在780~850℃内增加时,屈服强度、抗拉强度先减小后增加,延伸率、强塑积均增加;过时效温度在260~400℃内增加时,屈服强度增加,抗拉强度减小,延伸率整体呈增加趋势,屈强比增加;在280℃进行过时效,过时效时间在240~480s内增加时,屈服强度、抗拉强度均减小,延伸率、强塑积先减小后增加.  相似文献   

4.
10Cr21Mn16NiN高锰氮奥氏体不锈钢组织与性能研究   总被引:1,自引:0,他引:1  
研究了固溶处理温度对热轧态10Cr21Mn16NiN高锰氮奥氏体不锈钢微观组织、力学性能和腐蚀性能的影响,并进一步揭示了该材料的低温韧脆转变行为。结果表明,随着固溶温度的升高,屈服强度和抗拉强度逐渐降低,而延伸率和耐腐蚀性能逐渐增大。这是因为高温固溶促进了热轧阶段形成的有害相重新溶解,从而消除析出相对性能带来的不利影响。10Cr21Mn16NiN钢在低温冲击载荷下表现出明显的韧脆转变行为,韧脆转变温度在-110℃附近,高于-110℃可以获得强度与韧性的良好配合。  相似文献   

5.
The microstructure and mechanical properties of extruded Mg-2.5Zn-0.5Y alloy before and after annealing treatments were investigated. The as-extruded alloy exhibits a yield tensile strength (YTS) of 305.9 MPa and an ultimate tensile strength (UTS) of 354.8 MPa, whereas the elongation is only 4%. After annealing, the YTS and UTS decrease to 150 MPa and 240 MPa, respectively, and the elongation increases to 28%. Interestingly, the annealed alloy maintains an acceptable stress level even after a much higher ductility is achieved. These excellent mechanical properties stem from the combined effects of fine α-Mg dynamic recrystallization (DRX) grains and a homogeneously distributed icosahedral quasicrystalline phase (I-phase) in the α-Mg DRX grains. In particular, the superior ductility originates from the coherent interface of I-phase and α-Mg and from the formation of the secondary twin {1011}–{1012}(38°<1210>) in the tension twin {1012}.  相似文献   

6.
时效处理对2205 DSS组织及力学性能的影响   总被引:1,自引:0,他引:1  
首先对2205 DSS进行了1 100℃固溶处理,随后将试样分别在650,700,750,800,850和900℃下进行不同时间的时效处理,探究2205 DSS中σ相的析出规律及其对材料组织和力学性能的影响.研究结果表明:2205 DSS中σ相的析出分为有碳化物伴随和无碳化物伴随两种方式,前者发生在α-γ相界上,后者则主要发生在α相的晶内和晶界;2205 DSS在850℃时效时σ相的析出行为最严重;在析出σ相后,合金元素Cr和Mo在各相中会发生不同程度的偏聚;2205 DSS中析出少量的σ相对材料的塑性影响不大,但会显著降低材料的冲击韧性,而σ相的大量析出则会使两者均发生严重恶化;σ相的析出对材料的屈服强度影响不大,对材料的抗拉强度有略微的提高作用.  相似文献   

7.
为了确定AZ31镁合金轧制工艺参数,利用Gleeble--3500热模拟试验机进行热压缩试验以测试其热变形行为,并根据动态材料模型理论得到其热加工图.当变形温度为380~400℃、应变速率为3~12 s-1时,功率耗散效率大于30%,属于动态再结晶峰区;在该区域进行异步轧制变形退火处理后得到平均晶粒直径为2.3μm的细晶组织,抗拉强度为322.7MPa,延伸率为19.6%.当应变速率大于15 s-1时,属于流变失稳区,250~300℃低温加工时合金的塑性显著降低,350~400℃高温加工时合金出现混晶组织.  相似文献   

8.
The effects of heat treatment on the microstructure and mechanical properties of intermetallic compounds in the interface of stainless steel 321 explosively bonded to aluminum 1230 were investigated in this study. Experimental investigations were performed by optical microscopy, scanning electron microscopy, and microhardness and shear tensile strength testing. Prior to heat treatment, increasing the stand-off distance between samples from 1 to 2.5 mm caused their interface to become wavy and the thickness of intermetallic layers to increase from 3.5 to 102.3 μm. The microhardness increased from HV 766 in the sample prepared at a stand-off distance of 1 mm to HV 927 in the sample prepared at a stand-off distance of 2.5 mm; in addition, the sample strength increased from 103.2 to 214.5 MPa. Heat treatment at 450℃ for 6 h increased the thickness of intermetallic compound layers to 4.4 and 118.5 μm in the samples prepared at stand-off distances of 1 and 2.5 mm, respectively. These results indicated that increasing the duration and temperature of heat treatment decreased the microhardness and strength of the interface of explosively welded stainless steel 321-Al 1230 and increased the thickness of the intermetallic region.  相似文献   

9.
Deep rolling is one of the most widely used surface mechanical treatments among several methods used to generate compressive residual stress. This process is usually used for axisymmetric components and can lead to improvements of the surface quality, dimensional accuracy, and mechanical properties. In this study, we deduced the appropriate deep rolling parameters for Al-3vol%SiC nanocomposite samples using roughness and microhardness measurements. The nanocomposite samples were fabricated using a combination of mechanical milling, cold pressing, and hot extrusion techniques. Density measurements indicated acceptable densification of the samples, with no porosity. The results of tensile tests showed that the samples are sufficiently strong for the deep rolling process and also indicated near 50% improvement of tensile strength after incorporating SiC nanoparticle reinforcements. The effects of some important rolling parameters, including the penetration depth, rotation speed, feed rate, and the number of passes, on the surface quality and microhardness were also investigated. The results demonstrated that decreasing the feed rate and increasing the number of passes can lead to greater surface hardness and lower surface roughness.  相似文献   

10.
In the present study, an Al/Cu/Mg multi-layered composite was produced by accumulative roll bonding (ARB) through seven passes, and its microstructure and mechanical properties were evaluated. The microstructure investigations show that plastic instability occurred in both the copper and magnesium reinforcements in the primary sandwich. In addition, a composite with a perfectly uniform distribution of copper and magnesium reinforcing layers was produced during the last pass. By increasing the number of ARB cycles, the microhardness of the layers including aluminum, copper, and magnesium was significantly increased. The ultimate tensile strength of the sandwich was enhanced continually and reached a maximum value of 355.5 MPa. This strength value was about 3.2, 2, and 2.1 times higher than the initial strength values for the aluminum, copper, and magnesium sheets, respectively. Investigation of tensile fracture surfaces during the ARB process indicated that the fracture mechanism changed to shear ductile at the seventh pass.  相似文献   

11.
借助扫描电子显微镜、透射电子显微镜以及高温、室温拉伸和硬度测试研究了实验室研发的改进310奥氏体不锈钢在700℃长期时效后的组织与性能.700℃时效1000 h后,实验钢在晶界和晶内析出了大量(Cr,Fe,Mo)23C6、(Cr,Fe)23C6、σ相和少量的χ相.析出相对实验钢的室温力学性能有明显的强化作用.强度增加,硬度升高20 Hv,同时延伸率仍保持在30%以上.高温下,析出强化效应减弱,延伸率轻微下降.通过断口表面和剖面观察发现,时效1000 h后,实验钢的高温拉伸断口为韧性断裂,未观察到裂纹和孔洞;而室温拉伸断口为脆性断裂,断口附近则观察到σ相中出现裂纹和孔洞.从σ相的脆-韧转变和实验钢基体的室温和高温强度的不同,讨论了在室温拉伸过程中产生裂纹和孔洞的原因,以及时效对室温和高温力学行为的不同影响.  相似文献   

12.
铜合金表面激光诱导原位反应制备Ni基合金涂层   总被引:1,自引:0,他引:1  
采用含有定量纳米铝粉的Ni基新合金粉为涂层原材料,利用激光诱导原位反应在Cu-Cr合金表面制备陶瓷相增强Ni基合金涂层.研究了样品涂层的结构和机理.结果表明:在优化的激光诱导原位制备工艺参数条件下,涂层与铜基体之间形成了由涂层元素和基体元素组成且晶粒细小的结合界面结构;纳米铝粉能够提供更多能量促进铜合金表面涂层的形成;涂层中原位生成了直径小于10μm的陶瓷颗粒增强的复合涂层组织结构;涂层成分中纳米铝粉和稀土氧化物的加入,减少了裂纹和孔洞缺陷的形成;表面涂层的平均显微硬度由铜合金基体表面的85 HV提高到了340 HV.  相似文献   

13.
采用多向锻造实验的方法研究了末道次锻造温度为340℃的条件下锻造道次对5182铝合金宏微观组织的影响.研究结果表明:多向锻造过程中随锻造道次由3增至12,心部细晶区的面积不断扩大,锻造道次增至12次并未消除因累计变形量不同而导致的心部与边部的组织差异.锻造道次由3增至12的过程中,试样锤头附近的组织不断破碎变细,但未发生明显的再结晶.试样心部的变形组织在经3道次锻造后开始发生部分再结晶;经6道次锻造后试样心部发生完全再结晶,试样再经9,12道次锻造后心部均发生完全再结晶,且晶粒尺寸较锻6次试样略有增加.5182铝合金试样心部再结晶晶粒尺寸随锻造道次的累计增加会达到一个细化极限值.  相似文献   

14.
研究了第三代高强度高塑性TRIP钢的退火工艺对性能的影响和组织演变规律.热轧后形成的原始马氏体与临界退火时形成的残余奥氏体使TRIP钢具有良好的强度和塑性.结果表明:实验用钢可获得1000MPa以上的抗拉强度和30%以上的断后延伸率,且强塑积30 GPa.%;退火温度和保温时间对钢的力学性能具有显著影响,热轧TRIP钢临界退火温度为630℃,保温时间18 h时,实验用钢能获得最佳的综合力学性能.  相似文献   

15.
400℃退火对ECAP形变Q235钢的强度和位错强化的影响   总被引:1,自引:0,他引:1  
将经过淬火预处理和等通道转角挤压加工(ECAP)的Q235钢进行400℃退火.采用拉伸试验、X射线衍射(XRD)分析及描述强度-位错密度关系的Taylor公式,研究400℃退火对ECAP形变低碳钢的强度和位错强化的影响.拉伸试验表明:400℃退火使ECAP形变Q235钢强度降低,屈服强度从825 MPa下降到725 MPa,加工硬化能力和塑性显著提高.基于XRD分析和Taylor公式的定量计算说明,400℃退火对ECAP形变Q235钢的位错强化影响很小,实际强度的降低不是来自于位错强化的降低,而是来自于其他强化机制(晶界、亚晶界等)的降低.  相似文献   

16.
将薄带连铸技术引入因瓦合金的制备流程,利用金相显微镜、XRD、EBSD、微观硬度计、拉伸实验机等设备,围绕薄带连铸因瓦合金的组织织构演化及力学性能开展研究.结果表明:在钢液过热度较高的条件下,因瓦合金凝固组织以粗大的柱状奥氏体晶粒为主,织构为强烈的λ纤维织构(<100>//ND).冷轧过程中形成大量的变形亚结构,使硬度(HV)由铸态的165提高至230~240,冷轧织构以典型的铜型织构(112<111>)及S型织构(123<634>)为主.0.7mm厚冷轧板经900℃退火10min,形成包含大量退火孪晶的再结晶组织,织构较漫散,其屈服强度、抗拉强度和断后延伸率分别达293MPa,433MPa和33.4%,与传统流程制备的0.7mm厚因瓦合金的性能相当.  相似文献   

17.
低温盐浴渗氮对Custom 465钢耐蚀及耐磨性的影响   总被引:1,自引:0,他引:1  
为了提高Custom 465马氏体沉淀硬化不锈钢的耐磨性,分别在440、480和520℃对580℃时效后的样品进行了2 h的盐浴渗氮,使用显微硬度计、X射线衍射仪、电化学工作站、球盘式摩擦磨损仪、表面轮廓仪、扫描电镜等设备,研究渗氮温度对Custom 465钢表面物相、硬度、渗层显微形貌、耐蚀性及耐磨性的影响. 随着渗氮温度升高,耐蚀性逐渐降低,但表面硬度增加,520℃处理后表面硬度增大到1240 HV,较未处理试样的400 HV明显上升,渗层厚度达到22μm. 440℃渗氮后表面物相为氮在马氏体基体中过饱和的α'N ,点蚀电位降低约60 mV;480℃时有少量CrN相析出,引起点蚀电位降低约180 mV,同时磨损体积下降约43%;520℃时CrN相的含量明显升高,自腐蚀电位降低约70 mV,无明显的稳态钝化区,磨损体积降低82%,减磨效果明显.  相似文献   

18.
In this study, annealed pure copper was extruded using equal channel angular extrusion (ECAE) for a maximum of eight passes. The fatigue resistance of extruded specimens was evaluated for different passes and applied stresses using fatigue tests, fractography, and metallography. The mechanical properties of the extruded material were obtained at a tensile test velocity of 0.5 mm/min. It was found that the maximum increase in strength occurred after the 2nd pass. The total increase in ultimate strength after eight passes was 94%. The results of fatigue tests indicated that a significant improvement in fatigue life occurred after the 2nd pass. In subsequent passes, the fatigue life continued to improve but at a considerably lower rate. The improved fatigue life was dependent on the number of passes and applied stresses. For low stresses (or high-cycle fatigue), a maximum increase in fatigue resistance of approximately 500% was observed for the extruded material after eight passes, whereas a maximum fatigue resistance of 5000% was obtained for high-applied stresses (or low-cycle fatigue). Optical microscopic examinations revealed grain refinements in the range of 32 to 4 μm. A maximum increase in impact energy absorption of 100% was achieved after eight passes. Consistent results were obtained from fractography and metallography examinations of the extruded material during fatigue tests.  相似文献   

19.
对铝热反应制备的微纳结构2507双相不锈钢在1 000 ℃下进行了变形量为40%、60%和80%的轧制处理.利用X射线衍射仪(XRD)、光学显微镜(OM)、扫描电镜(SEM)、透射电镜(TEM)研究其轧制态显微组织.采用万能拉伸试验机和布洛维光学硬度计测试其力学性能.测试结果表明:轧制过程中,奥氏体和铁素体沿轧制方向被拉长,且奥氏体向铁素体转变.随着轧制变形量的增加,纳米晶平均晶粒尺寸变化不大,但体积分数减小.1 000 ℃下轧制变形量为40%、60%和80%后的屈服强度分别为232、284、456 MPa,抗拉强度分别为533、577、582 MPa,硬度分别为325、330、337 HV,延伸率分别为12.5%、11.1%和11.5%.  相似文献   

20.
Hydrostatic cyclic expansion extrusion(HCEE) process at elevated temperatures is proposed as a method for processing less deformable materials such as magnesium and for producing long ultrafine-grained rods. In the HCEE process at elevated temperatures, high-pressure molten linear low-density polyethylene(LLDPE) was used as a fluid to eliminate frictional forces. To study the capability of the process,AM60 magnesium rods were processed and the properties were investigated. The mechanical properties were found to improve significantly after the HCEE process. The yield and ultimate strengths increased from initial values of 138 and 221 MPa to 212 and 317 MPa, respectively.Moreover, the elongation was enhanced due to the refined grains and the existence of high hydrostatic pressure. Furthermore, the microhardness was increased from HV 55.0 to HV 72.5. The microstructural analysis revealed that ultrafine-grained structure could be produced by the HCEE process. Moreover, the size of the particles decreased, and these particles thoroughly scattered between the grains. Finite element analysis showed that the HCEE was independent of the length of the sample, which makes the process suitable for industrial applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号