首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ti_3SiC_2-reinforced Ag-matrix composites are expected to serve as electrical contacts. In this study, the wettability of Ag on a Ti_3SiC_2 substrate was measured by the sessile drop method. The Ag–Ti_3SiC_2 composites were prepared from Ag and Ti_3SiC_2 powder mixtures by pressureless sintering. The effects of compacting pressure(100–800 MPa), sintering temperature(850–950°C), and soaking time(0.5–2 h) on the microstructure and properties of the Ag–Ti_3SiC_2 composites were investigated. The experimental results indicated that Ti_3SiC_2 particulates were uniformly distributed in the Ag matrix, without reactions at the interfaces between the two phases. The prepared Ag–10 wt%Ti_3SiC_2 had a relative density of 95% and an electrical resistivity of 2.76 × 10-3 mΩ?cm when compacted at 800 MPa and sintered at 950°C for 1 h. The incorporation of Ti_3SiC_2 into Ag was found to improve its hardness without substantially compromising its electrical conductivity; this behavior was attributed to the combination of ceramic and metallic properties of the Ti_3SiC_2 reinforcement, suggesting its potential application in electrical contacts.  相似文献   

2.
Ti3AlC2-reinforced Ag-based composites, which are used as sliding current collectors, electrical contacts, and electrode materials, exhibit remarkable performances. However, the interfacial reactions between Ag and Ti3AlC2 significantly degrade the electrical and thermal properties of these composites. To diminish these interfacial reactions, we fabricated carbon-coated Ti3AlC2 particles (C@Ti3AlC2) as reinforcement and prepared Ag–10wt%C@Ti3AlC2 composites with carbon-layer thicknesses ranging from 50–200 nm. Compared with the uncoated Ag–Ti3AlC2 composite, Ag–C@Ti3AlC2 was found to have a better distribution of Ti3AlC2 particles. With increases in the carbon-layer thickness, the Vickers hardness value and relative density of Ag–C@Ti3AlC2 gradually decreases. With a carbon-layer thickness of 150 nm, we obtained the lowest resistivity of Ag–C@Ti3AlC2 of 29.4 135.5×10?9 Ω·m, which is half that of Ag–Ti3AlC2 (66.7 × 10?9 Ω·m). The thermal conductivity of Ag–C@Ti3AlC2 reached a maximum value of 135.5 W·m?1·K?1 with a 200-nm carbon coating (~1.8 times that of Ag–Ti3AlC2). These results indicate that the carbon-coating method is a feasible strategy for improving the performance of Ag–C@Ti3AlC2 composites.  相似文献   

3.
Ti3SiC2 has the potential to replace graphite as reinforcing particles in Cu matrix composites for applications in brush,electrical contacts and electrode materials.In this paper the fabrication of Cu-Ti3SiC2 metal matrix composites prepared by warm compaction powder metallurgy forming and spark plasma sintering(SPS) was studied.The stability of Ti3SiC2 at different sintering temperatures was also studied.The present experimental results indicate that the reinforcing particles in Cu-Ti3SiC2 composites are not stable at and above 800℃.The decomposition of Ti3SiC2 will lead to the formation of TiC and/or other carbides and TiSi2.If purity is the major concern,the processing and servicing temperatures of the Cu-Ti3SiC2 composite should be limited to 750℃ or lower.The composites prepared by warm compaction forming and SPS sintering at 750℃ have lower density when compared with the composites prepared by SPS sintering at 950℃,but their electrical resistivity values are very close to each other and even lower.  相似文献   

4.
The Al-Al2O3-MgO composites with added aluminum contents of approximately 0wt%, 5wt%, and 10wt%, named as M1, M2, and M3, respectively, were prepared at 1700℃ for 5 h under a flowing N2 atmosphere using the reaction sintering method. After sintering, the Al-Al2O3-MgO composites were characterized and analyzed by X-ray diffraction, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The results show that specimen M1 was composed of MgO and MgAl2O4. Compared with specimen M1, specimens M2 and M3 possessed MgAlON, and its production increased with increasing aluminum addition. Under an N2 atmosphere, MgO, Al2O3, and Al in the matrix of specimens M2 and M3 reacted to form MgAlON and AlN-polytypoids, which combined the particles and the matrix together and imparted the Al-Al2O3-MgO composites with a dense structure. The mechanism of MgAlON synthesis is described as follows. Under an N2 atmosphere, the partial pressure of oxygen is quite low; thus, when the Al-Al2O3-MgO composites were soaked at 580℃ for an extended period, aluminum metal was transformed into AlN. With increasing temperature, Al2O3 diffused into AlN crystal lattices and formed AlN-polytypoids; however, MgO reacted with Al2O3 to form MgAl2O4. When the temperature was greater than (1640 ±10)℃, AlN diffused into Al2O3 and formed spinel-structured AlON. In situ MgAlON was acquired through a solid-solution reaction between AlON and MgAl2O4 at high temperatures because of their similar spinel structures.  相似文献   

5.
A predominance area diagram for the Zr-Si-C-O system at 1773 K was plotted according to correlative thermodynamic data. β-SiC/ZrO2 composites were prepared based on the phase diagram by carbothermal reduction of zircon (ZrSiO4) in argon atmosphere. Zircon and carbon black were mixed according to the C/ZrSiO4 mass ratio of 0.2, and with 0, 1wt% and 2wt% extra addition of La2O3. Phase evolution of the mixture was investigated at 1723-1803 K by X-ray powder diffraction, and the microstructure of the product prepared at 1803 K for 4 h was examined by scanning electronic microscope. The results show that the decomposition of ZrSiO4 and the formation of β-SIC can be promoted by increasing the heating temperature and adding La2O3. The β-SiC/ZrO2 composites can be prepared at 1803 K for 4 h in a mixture of zircon, carbon black and La2O3, and the contents of β-SIC and m-ZrO2 in the product sample with 2wt% La2O3 reach the highest values of 10.8wt% and 89.2wt%, respectively. The crystal size of the products is about 200 nm.  相似文献   

6.
Six compositions with different ratio of β-Sialon/Al2O3 were synthesized from Al2O3, Si3N4 and SiO2 by sintering with 3%Y2O3(mass fraction) as addition under the cover with powders of SiC+C and at nitrogen atmosphere. Theeffects of atmosphere, sintering temperature and composition on the sintering behavior were studied. The results showedthat the composites reached the best sintering behavior with the highest density about 92% at 1 650℃ under the weakreduction atmosphere. Finally the relative density of diphasic β-Sialon and β-Sialon/Al2O3 composites were studied andpredicted using ANN (Artificial Neural Networks) method and the results were experimental examined by fore randomsamples.  相似文献   

7.
Nb–Mo–ZrB2 composites (V(Nb)/V(Mo)=1) with 15vol% or 30vol% of ZrB2 were fabricated by hot-pressing sintering at 2000℃. The phases, microstructure, and mechanical properties were then investigated. The composites contain Nb-Mo solid solution (denoted as (Nb, Mo)ss hereafter), ZrB, MoB, and NbB phases. Compressive strength test results suggest that the strength of Nb–Mo–ZrB2 composites increases with increasing ZrB2 content; Nb–Mo–30vol%ZrB2 had the highest compressive strength (1905.1 MPa). The improvement in the compressive strength of the Nb–Mo–ZrB2 composites is mainly attributed to the secondary phase strengthening of the stiffer ZrB phase, solid-solution strengthening of the (Nb, Mo)ss matrix as well as fine-grain strengthening. The fracture toughness decreases with increasing ZrB2 content. Finally, the fracture modes of the Nb–Mo–ZrB2 composites are also discussed in detail.  相似文献   

8.
Three different castables based on the Al2O3–MgO–CaO system were prepared as steel-ladle purging plug refractories: corundum- based low-cement castable (C-LCC), corundum-spinel-based low-cement castable (C-S-LCC), and corundum-spinel no-cement castable (C-S-NCC) (hydratable alumina (ρ-Al2O3) bonded). The fracture behavior at room temperature was tested by the method of “wedge-splitting” on samples pre-fired at different temperatures; the specific fracture energy G′f and notched tensile strength σNT were obtained from these tests. In addition, the Young’s modulus E was measured by the method of resonance frequency of damping analysis (RFDA). The thermal stress resistance parameter R′′′′ calculated using the values of G′f, σNT, and E was used to evaluate the thermal shock resistance of the materials. According to the microstructure analysis results, the sintering effect and the bonding type of the matrix material were different among these three castables, which explains their different fracture behaviors.  相似文献   

9.
Diatomite-based porous ceramics were adopted as carriers to immobilize nano-TiO2 via a hydrolysis-deposition technique. The thermal degradation of as-prepared composites was investigated using thermogravimetric-differential thermal analysis, and the phase and microstructure were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, and transmission electron microscopy. The results indicated that the carriers were encapsulated by nano-TiO2 with a thickness of 300-450 nm. The main crystalline phase of TiO2 calcined at 650℃ was anatase, and the average grain size was 8.3 nm. The FT-IR absorption bands at 955.38 cm-1 suggested that new chemical bonds among Ti, O, and Si had formed in the composites. The photocatalytic (PC) activity of the composites was investigated under UV irradiation. Furthermore, the photodegradation kinetics of formaldehyde was investigated using the composites as the cores of an air cleaner. A kinetics study showed that the reaction rate constants of the gas-phase PC reaction of formaldehyde were κ=0.576 mg·m-3·min-1 and K=0.048 m3.  相似文献   

10.
The method of calciothermic reduction of B4C was proposed for preparing CaB6. The phase transition and morphology evolution during the reaction were investigated in detail. The experimental results reveal that Ca first reacts with B4C to generate CaB2C2 and CaB6 at a low temperature and that the CaB2C2 subsequently reacts with Ca to produce CaB6 and CaC2 at a high temperature. After the products were leached to remove the byproduct CaC2, pure CaB6 was obtained. The grain size of the prepared CaB6 was 2–3 μm, whereas its particle size was 4–13 μm; it inherited the particle size of B4C. The residual C content of the product was decreased to 1.03wt% after the first reaction at 1173 K for 4 h and the second reaction at 1623 K for 4 h.  相似文献   

11.
Molybdenum disulfide (MoS2) is one of the most commonly used solid lubricants for Cu-Fe-based friction materials. Nevertheless, MoS2 reacts with metal matrices to produce metal sulfides (e.g., FeS) and Mo during sintering, and the lubricity of the composite may be related to the generation of FeS. Herein, the use of FeS as an alternative to MoS2 for producing Cu-Fe-based friction materials was investigated. According to the reaction principle of thermodynamics, two composites-one with MoS2 (Fe-Cu-MoS2 sample) and the other with FeS (FeS-Cu2S-Cu-Fe-Mo sample), were prepared and their friction behaviors and mechanical properties were compared. The results showed that MoS2 reacted with the Cu-Fe matrix to produce FeS, metallic ternary sulfides, and Mo when sintered at 1050℃. The MoS2-Cu-Fe and FeS-Cu2S-Cu-Fe-Mo samples thereby exhibited similar characteristics with respect to phase composition, density, hardness, and tribological behaviors. Micrographs of the worn surfaces revealed that the stable friction regime for both composites stemmed from the iron sulfides friction layers rather than from the molybdenum sulfides layers.  相似文献   

12.
Al composites are of interest due to their appropriate ratio of strength to weight. In our research, an Al/Co3O4 nanocomposite was generated using a sintering technique. The powders of Al with various Co3O4 nanoparticle contents (0wt%, 0.5wt%, 1.0wt%, 1.5wt%, 2.0wt%, and 2.5wt%) were first blended using planetary milling for 30 min, and compressed in a cylindrical steel mold with a diameter of 1 cm and a height of 5 cm at a pressure of 80 MPa. The samples were evaluated with X-ray diffractometry (XRD), scanning electron microscopy (SEM), Vickers hardness, and a vibrating sample magnetometer (VSM). Although the crystallite size of the Al particles remained constant at 7–10 nm, the accumulation of nanoparticles in the Al particle interspace increased the structural tensile strain from 0.0045 to 0.0063, the hardness from HV 28 to HV 52 and the magnetic saturation from 0.044 to 0.404 emu/g with an increase in Co3O4 nanoparticle content from 0wt% to 2.5wt%.  相似文献   

13.
The aim of the present study was to fabricate Fe–TiC–Al2O3 composites on the surface of medium carbon steel. For this purpose, TiO2–3C and 3TiO2–4Al–3C–xFe (0 ≤ x ≤ 4.6 by mole) mixtures were pre-placed on the surface of a medium carbon steel plate. The mixtures and substrate were then melted using a gas tungsten arc cladding process. The results show that the martensite forms in the layer produced by the TiO2–3C mixture. However, ferrite–Fe3C–TiC phases are the main phases in the microstructure of the clad layer produced by the 3TiO2–4Al–3C mixture. The addition of Fe to the TiO2–4Al–3C reactants with the content from 0 to 20wt% increases the volume fraction of particles, and a composite containing approximately 9vol% TiC and Al2O3 particles forms. This composite substantially improves the substrate hardness. The mechanism by which Fe particles enhance the TiC + Al2O3 volume fraction in the composite is determined.  相似文献   

14.
The effect of SiO2 doping on the sintering behavior, microstructure, and dielectric properties of BaTiO3-based ceramics has been investigated. Silica was added to the BaTiO3-based powder prepared by the solid state method with 0.075mol%, 0.15mol%, and 0.3mol%, respectively. The SiO2-doped BaTiO3-based ceramic with high density and uniform grain size were obtained, which were sintered in reducing atmosphere. A scanning electron microscope, X-ray diffraction, and LCR meter were used to determine the microstructure as well as the dielectric properties. SiO2 can form a liquid phase belonging to the ternary system of BaO-TiO2-SiO2, leading to the formation of BaTiO3 ceramics with high density at a lower sintering temperature. The SiO2-doped BaTiO3-based ceramics can be sintered to a theoretical density higher than 95% at 1220℃ with a soaking time of 2 h. The dielectric constants of the sample with 0.15mol% SiO2 addition sintered at 1220℃ is about 9000. Doping with a small amount of silica can improve the sintering and dielectric properties of BaTiO3-based ceramics.  相似文献   

15.
The main objective of this paper was to fabricate Cu10Sn5Ni alloy and its composites reinforced with various contents of Si3N4 particles (5wt%, 10wt%, and 15wt%) and to investigate their dry sliding wear behavior using a pin-on-disk tribometer. Microstructural examinations of the specimens revealed a uniform dispersion of Si3N4 particles in the copper matrix. Wear experiments were performed for all combinations of parameters, such as load (10, 20, and 30 N), sliding distance (500, 1000, and 1500 m), and sliding velocity (1, 2, and 3 m/s), for the alloy and the composites. The results revealed that wear rate increased with increasing load and increasing sliding distance, whereas the wear rate decreased and then increased with increasing sliding velocity. The primary wear mechanism encountered at low loads was mild adhesive wear, whereas that at high loads was severe delamination wear. An oxide layer was formed at low velocities, whereas a combination of shear and plastic deformation occurred at high velocities. The mechanism at short sliding distances was ploughing action of Si3N4 particles, which act as protrusions; by contrast, at long sliding distances, direct metal-metal contact occurred. Among the investigated samples, the Cu/10wt% Si3N4 composite exhibited the best wear resistance at a load of 10 N, a velocity of 2 m/s, and a sliding distance of 500 m.  相似文献   

16.
The fabrication of copper (Cu) and copper matrix silicon carbide (Cu/SiCp) particulate composites via the sinter-forging process was investigated. Sintering and sinter-forging processes were performed under an inert Ar atmosphere. The influence of sinter-forging time, temperature, and compressive stress on the relative density and hardness of the prepared samples was systematically investigated and subsequently compared with that of the samples prepared by the conventional sintering process. The relative density and hardness of the composites were enhanced when they were prepared by the sinter-forging process. The relative density values of all Cu/SiCp composite samples were observed to decrease with the increase in SiC content.  相似文献   

17.
Aluminum borate whisker/aluminum phosphates composites were prepared with normal pressure sintering, It was found that the aluminum borate whisker was effective to suppress the crystallization of aluminum phosphates in the aluminum borate whisker/aluminum phosphates composites and contributed to the improvement of the mechanical properties. After sintered at 1050℃ for 1 h, the flexural strength of the composites with 30 vol% aluminum borate whisker addition reached 215.3 MPa. The dielectric constant and loss tangent of the composites were 4.23 and 0.0024 at 10 GHz.  相似文献   

18.
Series of(Ag)x/(Cu0.5Tl0.5Ba2Ca2Cu3O10-δ) {(Ag)x/Cu Tl-1223} nano-superconductor composites were synthesized with different concentrations(i.e. x ? 0 4.0 wt%) of silver(Ag) nanoparticles. Low anisotropic Cu Tl-1223 superconducting matrix was prepared by solid-state reaction and Ag nanoparticles were prepared by a sol–gel method separately. The required(Ag)x/Cu Tl-1223 composition was obtained by the inclusion of Ag nanoparticles in Cu Tl-1223 superconducting matrix. Structural, morphological, compositional and superconducting transport properties of these composites were investigated in detail by x-ray diffraction(XRD), scanning electron microscopy(SEM), energy dispersive x-rays(EDX)spectroscopy and four-point probe electrical resistivity(ρ) measurements. The inclusion of Ag nanoparticles enhanced the superconducting properties without affecting the tetragonal structure of the host Cu Tl-1223 matrix. The improvement in superconducting properties of(Ag)x/Cu Tl-1223 composites is most likely due to enhanced inter-grains coupling and increased superconducting volume fraction after the addition of metallic Ag nanoparticles at the inter-crystallite sites in the samples. The presence of Ag nanoparticles at the grain-boundaries may increase the number of flux pinning centers, which were present in the form of weak-links in the pure Cu Tl-1223 superconducting matrix.  相似文献   

19.
Al2O3 –TiC/TiCN–Fe composite powders were successfully prepared directly from ilmenite at 1300–1400℃.The effects of Al/C ratio,sintering atmosphere,and reaction temperature and time on the reaction products were investigated.Results showed that the nitrogen atmosphere was bene cial to the reduction of ilmenite and the formation of Al2O3 –TiC/TiCN–Fe composite powders.When the reaction temperature was between 600 and 1100℃,the intermediate products,TiO2,Ti3O5 and Ti4O7 were found,which changed to TiC or TiCN at higher temperature.Al/C ratio was found to affect the reaction process and synthesis products.When Al addition was 0.5 mol,the Al2O3 phase did not appear.The content of carbon in TiCN rose when the reaction temperature was increased.  相似文献   

20.
(GO/TiO2)N (GO represents graphene oxide, and N represents the period number of alternate superposition of two dielectrics) one-dimensional photonic crystal with different lattice constants was prepared via the sol–gel technique, and its transmission characteristics for photocatalysis were tested. The results show that the lattice constant, filling ratio, number of periodic layers, and incident angle had effects on the band gap. When the lattice constant, filling ratio, number of periodic layers, and incident angle were set to 125 nm, 0.45, 21, and 0°, respectively, a gap width of 53 nm appeared at the central wavelength (322 nm). The absorption peak of the photocatalyst at 357 nm overlapped the blue edge of the photonic band gap. A slow photon effect region above 96% reflectivity appeared. The degradation rate of tetracycline in (GO/TiO2)N photonic crystal was enhanced to 64% within 60 min. Meanwhile, the degradation efficiency of (GO/TiO2)N one-dimensional photonic crystal was effectively improved compared with those of the GO/TiO2 composite film and GO/TiO2 powder.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号