首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 828 毫秒
1.
The demanganization reaction kinetics of carbon-saturated liquid iron with an eight-component slag consisting of CaO–SiO_2–MgO–FeO–MnO–Al_2O_3–TiO_2–CaF_2 was investigated at 1553, 1623, and 1673 K in this study. The rate-controlling step(RCS) for the demanganization reaction with regard to the hot metal pretreatment conditions was studied via kinetics analysis based on the fundamental equation of heterogeneous reaction kinetics. From the temperature dependence of the mass transfer coefficient of a transition-metal oxide(Mn O), the apparent activation energy of the demanganization reaction was estimated to be 189.46 k J·mol~(–1) in the current study, which indicated that the mass transfer of Mn O in the molten slag controlled the overall rate of the demanganization reaction. The calculated apparent activation energy was slightly lower than the values reported in the literature for mass transfer in a slag phase. This difference was attributed to an increase in the "specific reaction interface"(SRI) value, either as a result of turbulence at the reaction interface or a decrease of the absolute amount of slag phase during sampling, and to the addition of calcium fluoride to the slag.  相似文献   

2.
The mass transfer among the multiphase interactions among the steel, slag, lining refractory, and nonmetallic inclusions during the refining process of a bearing steel was studied using laboratory experiments and numerical kinetic prediction. Experiments on the system with and without the slag phase were carried out to evaluate the influence of the refractory and the slag on the mass transfer. A mathematical model coupled the ion and molecule coexistence theory, coupled-reaction model, and the surface renewal theory was established to predict the dynamic mass transfer and composition transformation of the steel, the slag, and nonmetallic inclusions in the steel. During the refining process,Al_2 O_3 inclusions transformed into Mg O inclusions owing to the mass transfer of [Mg] at the steel/refractory interface and(Mg O) at the slag/refractory interface. Most of the aluminum involved in the transport entered the slag and a small part of the aluminum transferred to lining refractory, forming the Al_2 O_3 or Mg O·Al_2 O_3. The slag had a significant acceleration effect on the mass transfer. The mass transfer rate(or the reaction rate) of the system with the slag was approximately 5 times larger than that of the system without the slag. In the first 20 min of the refining, rates of magnesium mass transfer at the steel/inclusion interface, steel/refractory interface, and steel/slag interface were x, 1.1 x, and 2.2 x,respectively. The composition transformation of inclusions and the mass transfer of magnesium and aluminum in the steel were predicted with an acceptable accuracy using the established kinetic model.  相似文献   

3.
To understand the migration mechanisms of phosphorus (P) during coal-based reduction, a high-phosphorus oolitic iron ore was reduced by coal under various experimental conditions. The migration characteristics and kinetics of P were investigated by a field-emission electron probe microanalyzer (FE-EPMA) and using the basic principle of solid phase mass transfer, respectively. Experimental results showed that the P transferred from the slag to the metallic phase during reduction, and the migration process could be divided into three stages:phosphorus diffusing from the slag to the metallic interface, the formation of Fe-P compounds at the slag-metal interface and P diffusing from the slag-metal interface to the metallic interior. The reduction time and temperature significantly influenced the phosphorus content of the metallic and slag phases. The P content of the metallic phase increased with increasing reduction time and temperature, while that of the slag phase gradually decreased. The P diffusion constant and activation energy were determined and a migration kinetics model of P in coal-based reduction was proposed. P diffusion in the metallic phase was the controlling step of the P migration.  相似文献   

4.
Ni/Sn couples, prepared by sequentially electroplating Ni layers and Sn layers on metallized Si wafers, were employed to study the microstructures and growth kinetics of Ni-Sn intermediate phases, when the Ni/Sn couples were aged at room temperature or annealed at temperatures from 150 to 225℃ for various times. The results show that the NiSn phase and Ni3Sn4 phase are formed, respectively, in the aged couples and annealed couples. The Ni3Sn4 layer is continuously distributed between the Ni and Sn sides in the annealed Ni/Sn couples. The Ni3Sn4 growth follows parabolic growth kinetics with an apparent activation energy of 39.0 kJ/mol.  相似文献   

5.
The reduction of ilmenite concentrate in 30vol% CO-70vol% N2 atmosphere was characterized by thermogravimetric and differential thermogravimetric (TG-DTG) analysis methods at temperatures from 1073 to 1223 K. The isothermal reduction results show that the reduction process comprised two stages; the corresponding apparent activation energy was obtained by the iso-conversional and model-fitting methods. For the first stage, the effect of temperature on the conversion degree was not obvious, the phase boundary chemical reaction was the controlling step, with an apparent activation energy of 15.55-40.71 kJ·mol-1. For the second stage, when the temperatures was greater than 1123 K, the reaction rate and the conversion degree increased sharply with increasing temperature, and random nucleation and subsequent growth were the controlling steps, with an apparent activation energy ranging from 182.33 to 195.95 kJ·mol-1. For the whole reduction process, the average activation energy and pre-exponential factor were 98.94-118.33 kJ·mol-1 and 1.820-1.816 min-1, respectively.  相似文献   

6.
Considering the precise composition control on the vacuum refining of high-Mn steel, the behaviors of both Mn evaporation and nitrogen removal from molten Mn steel were investigated via vacuum slag refining in a vacuum induction furnace. It was found that the reaction interfaces of denitrification and Mn evaporation tend to migrate from the surface of slag layer to the surface of molten steel with the gradual exposure of molten steel during the vacuum slag refining process. Significantly, compared with the experimental group without slag addition, the addition of slag into steel can result in a lower Mn evaporation rate constant of 0.0192 cm·min?1 at 370 Pa, while the denitrification rate is almost not affected. Besides, the slag has a stronger inhibitory effect on Mn evaporation than the reduced vacuum pressure. Moreover, the inhibitory effect of the slag layer on Mn evaporation can be weakened with the increase of the initial Mn content in molten steel. The slag layer can work as an inhibitory layer to reduce the Mn evaporation from molten steel, the evaporation reaction of Mn mainly proceeds on the surface of the molten steel. This may be attributed to the Mn mass transfer coefficient for one of reaction at steel/slag interface, mass transfer in molten slag, and evaporation reaction at slag/gas interface is lower than that of evaporation reaction at steel/gas interface. The introduction of slag is proposed for both denitrification and manganese control during the vacuum refining process of Mn steels.  相似文献   

7.
The electrochemical behavior of ionizable drugs (Amitripty/ine, Diphenhydramine and Trihexyphenedyl) at the water/1,2-dichloroethane interface with the phase volume ratio (r=Vo/Vw) equal to 1 are investigated by cyclic voltammetry. The system is composed of an aqueous droplet supported at an Ag/AgCI disk electrode and it was covered with an organic solution. In this manner, a conventional three-electrode potentiostat can be used to study the ionizable drugs transfer process at a liquid/liquid interface.Physicochemical parameters such as the formal transfer potential, the Gibbs energy of transfer and the standard partition coefficients of the ionized forms of these drugs can be evaluated from cyclic voltammograms obtained. The obtained results have been summarized in ionic partition diagrams, which are a useful tool for predicting and interpreting the transfer mechanisms of ionizable drugs at the liquid/liquid interfaces and biological membranes.  相似文献   

8.
Mass transfer of phosphorus in high-phosphorus hot-metal refining was investigated using CaO-FetO-SiO2 slags at 1623 K. Based on a two-film theory kinetic model and experimental results, it was found that the overall mass transfer coefficient, which includes the effects of mass transfer in both the slag phase and metal phase, is in the range of 0.0047 to 0.0240 cm/s. With the addition of a small amount of fluxing agents Al2O3 or Na2O into the slag, the overall mass transfer coefficient has an obvious increase. Silicon content in the hot metal also influences the overall mass transfer coefficient. The overall mass transfer coefficient in the lower[Si] heat is much higher than that in the higher[Si] heat. It is concluded that both fluxing agents and lower[Si] hot metal facilitate mass transfer of phosphorus in liquid phases. Furthermore, the addition of Na2O could also prevent rephosphorization at the end of the experiment.  相似文献   

9.
Considering the precise composition control on the vacuum refining of high-Mn steel, the behaviors of both Mn evaporation and nitrogen removal from molten Mn steel were investigated via vacuum slag refining in a vacuum induction furnace. It was found that the reaction interfaces of denitrification and Mn evaporation tend to migrate from the surface of slag layer to the surface of molten steel with the gradual exposure of molten steel during the vacuum slag refining process. Significantly, compared with the experimental group without slag addition, the addition of slag into steel can result in a lower Mn evaporation rate constant of 0.0192 cm·min~(-1) at 370 Pa, while the denitrification rate is almost not affected. Besides, the slag has a stronger inhibitory effect on Mn evaporation than the reduced vacuum pressure. Moreover, the inhibitory effect of the slag layer on Mn evaporation can be weakened with the increase of the initial Mn content in molten steel. The slag layer can work as an inhibitory layer to reduce the Mn evaporation from molten steel, the evaporation reaction of Mn mainly proceeds on the surface of the molten steel. This may be attributed to the Mn mass transfer coefficient for one of reaction at steel/slag interface, mass transfer in molten slag, and evaporation reaction at slag/gas interface is lower than that of evaporation reaction at steel/gas interface. The introduction of slag is proposed for both denitrification and manganese control during the vacuum refining process of Mn steels.  相似文献   

10.
Diatomite-based porous ceramics were adopted as carriers to immobilize nano-TiO2 via a hydrolysis-deposition technique. The thermal degradation of as-prepared composites was investigated using thermogravimetric-differential thermal analysis, and the phase and microstructure were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, and transmission electron microscopy. The results indicated that the carriers were encapsulated by nano-TiO2 with a thickness of 300-450 nm. The main crystalline phase of TiO2 calcined at 650℃ was anatase, and the average grain size was 8.3 nm. The FT-IR absorption bands at 955.38 cm-1 suggested that new chemical bonds among Ti, O, and Si had formed in the composites. The photocatalytic (PC) activity of the composites was investigated under UV irradiation. Furthermore, the photodegradation kinetics of formaldehyde was investigated using the composites as the cores of an air cleaner. A kinetics study showed that the reaction rate constants of the gas-phase PC reaction of formaldehyde were κ=0.576 mg·m-3·min-1 and K=0.048 m3.  相似文献   

11.
To design optimal pyrometallurgical processes for nickel and cobalt recycling, and more particularly for the end-of-life process of Ni-Co-Fe-based end-of-life (EoL) superalloys, knowledge of their activity coefficients in slags is essential. In this study, the activity coefficients of NiO and CoO in CaO-Al2O3-SiO2 slag, a candidate slag used for the EoL superalloy remelting process, were measured using gas/slag/metal equilibrium experiments. These activity coefficients were then used to consider the recycling efficiency of nickel and cobalt by remelting EoL superalloys using CaO-Al2O3-SiO2 slag. The activity coefficients of NiO and CoO in CaO-Al2O3-SiO2 slag both show a positive deviation from Raoult's law, with values that vary from 1 to 5 depending on the change in basicity. The activity coefficients of NiO and CoO peak in the slag with a composition near B=(%CaO)/(%SiO2)=1, where B is the basicity. We observed that controlling the slag composition at approximately B=1 effectively reduces the cobalt and nickel oxidation losses and promotes the oxidation removal of iron during the remelting process of EoL superalloys.  相似文献   

12.
Al-Ti-O inclusions always clog submerged nozzles in Ti-bearing Al-killed steel. A typical synthesized Al2TiO5 inclusion was immersed in a CaO-SiO2-Al2O3 molten slag for different durations at 1823 K. The Al2TiO5 dissolution paths and mechanism were revealed by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). Decreased amounts of Ti and Al and increased amounts of Si and Ca at the dissolution boundary prove that inclusion dissolution and slag penetration simultaneously occur. SiO2 diffuses or penetrates the inclusion more quickly than CaO, as indicated by the w(CaO)/w(SiO2) value in the reaction region. A liquid product (containing 0.7–1.2 w(CaO)/w(SiO2), 15wt%–20wt% Al2O3, and 5wt%–15wt% TiO2) forms on the inclusion surface when Al2TiO5 is dissolved in the slag. Al2TiO5 initially dissolves faster than the diffusion rate of the liquid product toward the bulk slag. With increasing reaction time, the boundary reaches its largest distance, the Al2TiO5 dissolution rate equals the liquid product diffusion rate, and the dissolution process remains stable until the inclusion is completely dissolved.  相似文献   

13.
The effects of MgO and TiO2 on the viscosity, activation energy for viscous flow, and break-point temperature of titanium-bearing slag were studied. The correlation between viscosity and slag structure was analyzed by Fourier transform infrared (FTIR) spectroscopy. Subsequently, main phases in the slag and their content changes were investigated by X-ray diffraction and Factsage 6.4 software package. The results show that the viscosity decreases when the MgO content increases from 10.00wt% to 14.00wt%. Moreover, the break-point temperature increases, and the activation energy for viscous flow initially increases and subsequently decreases. In addition, with increasing TiO2 content from 5.00wt% to 9.00wt%, the viscosity decreases, and the break-point temperature and activation energy for viscous flow initially decrease and subsequently increase. FTIR analyses reveal that the polymerization degree of complex viscous units in titanium-bearing slag decreases with increasing MgO and TiO2 contents. The mechanism of viscosity variation was elucidated. The basic phase in experimental slags is melilite. Besides, as the MgO content increases, the amount of magnesia–alumina spinel in the slag increases. Similarly, the sum of pyroxene and perovskite phases in the slag increases with increasing TiO2 content.  相似文献   

14.
CaO-Al2O3-SiO2 (CAS) glass-ceramics were prepared via a melting method using naturally cooled yellow phosphorus furnace slag as the main raw material. The effects of the addition of Fe2O3 on the crystallization behavior and properties of the prepared glass-ceramics were studied by differential thermal analysis, X-ray diffraction, and scanning electron microscopy. The crystallization activation energy was calculated using the modified Johnson-Mehl-Avrami equation. The results show that the intrinsic nucleating agent in the yellow phosphorus furnace slag could effectively promote the crystallization of CAS. The crystallization activation energy first increased and then decreased with increasing amount of added Fe2O3. At 4wt% of added Fe2O3, the crystallization activation energy reached a maximum of 676.374 kJ·mol-1. The type of the main crystalline phase did not change with the amount of added Fe2O3. The primary and secondary crystalline phases were identified as wollastonite (CaSiO3) and hedenbergite (CaFe(Si2O6)), respectively.  相似文献   

15.
Metal Sm has been widely used in making Al-Sm magnet alloy materials. Conventional distillation technology to produce Sm has the disadvantages of low productivity, high costs, and pollution generation. The objective of this study was to develop a molten salt electrolyte system to produce Al-Sm alloy directly, with focus on the electrical conductivity and optimal operating conditions to minimize the energy consumption. The continuously varying cell constant (CVCC) technique was used to measure the conductivity for the Na3AlF6-AlF3-LiF-MgF2-Al2O3-Sm2O3 electrolysis medium in the temperature range from 905 to 1055℃. The temperature (t) and the addition of Al2O3 (W(Al2O3)), Sm2O3 (W(Sm2O3)), and a combination of Al2O3 and Sm2O3 into the basic fluoride system were examined with respect to their effects on the conductivity (κ) and activation energy. The experimental results showed that the molten electrolyte conductivity increases with increasing temperature (t) and decreases with the addition of Al2O3 or Sm2O3 or both. We concluded that the optimal operation conditions for Al-Sm intermediate alloy production in the Na3AlF6-AlF3-LiF-MgF2-Al2O3-Sm2O3 system are W(Al2O3) + W(Sm2O3)=3wt%, W(Al2O3):W(Sm2O3)=7:3, and a temperature of 965 to 995℃, which results in satisfactory conductivity, low fluoride evaporation losses, and low energy consumption.  相似文献   

16.
A comparative study of the dissolution kinetics of galena ore in binary solutions of FeCl3/HCl and H2O2/HCl has been undertaken. The dissolution kinetics of the galena was found to depend on leachant concentration, reaction temperature, stirring speed, solid-to-liquid ratio, and particle diameter. The dissolution rate of galena ore increases with the increase of leachant concentration, reaction temperature, and stirring speed, while it decreases with the increase of solid-to-liquid ratio and particle diameter. The activation energy (E a) of 26.5 kJ/mol was obtained for galena ore dissolution in 0.3 M FeCl3/8.06 M HCl, and it suggests the surface diffusion model for the leaching reaction, while the E a value of 40.6 kJ/mol was obtained for its dissolution in 8.06 M H2O2/8.06 M HCl, which suggests the surface chemical reaction model for the leaching reaction. Furthermore, the linear relationship between rate constants and the reciprocal of particle radius supports the fact that dissolution is controlled by the surface reaction in the two cases. Finally, the rate of reaction based on the reaction-controlled process has been described by a semiempirical mathematical model. The Arrhenius and reaction constants of 11.023 s−1, 1.25×104 and 3.65×102 s−1, 8.02×106 were calculated for the 0.3 M FeCl3/8.06 M HCl and 8.06 M H2O2/8.06 M HCl binary solutions, respectively.  相似文献   

17.
分析了IF钢冶炼过程中渣对钢液中[Al]、[Ti]的氧化机理,在此基础上提出了IF钢加铝脱氧后全氧的预测模型.结果表明,熔渣中(FeO)、(MnO)对钢液的二次氧化存在两种方式.当氧化物在渣中的传质是反应限制性环节时,反应发生在渣/钢界面,生成的脱氧产物分布在渣/钢界面,此时渣的氧化性随时间呈指数下降;当脱氧元素在钢中传质是反应限制性环节时,反应发生在钢液内部.对某厂RH精炼渣的数据作回归得到RH加铝后渣的氧化性随时间指数变化的关系式.  相似文献   

18.
Satisfying the mold-flux performance requirements for high-speed continuous casting necessitates the development of a new non-Newtonian-fluid mold flux with shear-thinning behavior, i.e., a mold flux whose viscosity is relatively high under lower shear rates and relatively low under higher shear rates. In this work, a mold flux that exhibits shear-thinning behavior was developed by adding different amounts of Si3N4 to the CaO-SiO2-CaF2 mold flux. The shear-thinning behavior was investigated using a rotational viscometer. In addition, the microstructure of the newly prepared slags was studied by high-temperature Raman spectroscopy and X-ray photoelectron spectroscopy. The results showed that the mechanism of shear-thinning was attributable to a temporary viscosity loss caused by the one-way shear stress, whereas the corresponding magnitude of shear-thinning was closely related to the degree of polymerization (DP). Finally, the non-Newtonian fluid mold flux was used for laboratory casting tests, which revealed that the mold flux could reduce slag entrapment and positively affect the continuous casting optimization.  相似文献   

19.
To investigate the flow of primary slag bearing TiO2 in the cohesive zone of blast furnaces,experiments were carried out based on the laboratory-scale packed bed systems.It is concluded that the initial temperature of slag dripping increases with decreasing FeO content and increasing TiO2 content.The slag holdup decreases when the FeO content is in the range of 5wt%-10wt%,whereas it increases when the FeO content exceeds 10wt%.Meanwhile,the slag holdup decreases when the TiO2 content increases from 5wt% to 10wt% but increases when the TiO2 content exceeds 10wt%.Moreover,slag/coke interface analysis shows that the reaction between FeO and TiO2 occurs between the slag and the coke.The slag/coke interface is divided into three layers:slag layer,iron-rich layer,and coke layer.TiO2 in the slag is reduced by carbon,and the generated Ti diffuses into iron.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号