首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
真空碳热还原过程中二氧化硅的挥发行为   总被引:1,自引:0,他引:1  
为了解在真空碳热还原过程中SiO2的还原特性以及还原过程中的主要影响因素,对二氧化硅的还原过程进行热力学分析,得出化学反应自由能和临界温度。在系统压力为2~200 Pa条件下,以分析纯SiO2和Fe2O3为原料,采用XRD,SEM,EDS和化学成分分析等手段,研究Fe/Si摩尔比、配碳量、反应时间、还原剂粒度和升温速率对硅的挥发率和还原反应速率的影响。实验结果表明:在100 Pa条件下,SiO2的临界反应温度为1 330~1 427 K。SiO2发生气化反应生成的SiO气体挥发至石墨冷凝系统歧化生成Si和SiO2,造成硅的损失,且有部分SiO气体和石墨反应生成SiC;增大Fe/Si摩尔比和配碳量以及减小还原剂粒度均降低了硅的挥发率,提高了SiO2还原反应速率;延长反应时间和提高升温速率增加了硅的挥发率。  相似文献   

2.
An orthogonal test was used to optimize the reaction conditions of roasting zinc oxide ore using (NH4)2SO4. The optimized reaction conditions are defined as an (NH4)2SO4/zinc molar ratio of 1.4:1, a roasting temperature of 440°C, and a thermostatic time of 60 min. The molar ratio of (NH4)2SO4/zinc is the most predominant factor and the roasting temperature is the second significant factor that governs the zinc extraction. Thermogravimetric–differential thermal analysis was used for (NH4)2SO4 and zinc mixed in a molar ratio of 1.4:1 at the heating rates of 5, 10, 15, and 20 K·min-1. Two strong endothermic peaks indicate that the complex chemical reactions occur at approximately 290°C and 400°C. XRD analysis was employed to examine the transformations of mineral phases during roasting process. Kinetic parameters, including reaction apparent activation energy, reaction order, and frequency factor, were calculated by the Doyle–Ozawa and Kissinger methods. Corresponding to the two endothermic peaks, the kinetic equations were obtained.  相似文献   

3.
A coordination complex was synthesized from NiCl2 and dipeptide glycylglycine(GG). It was characterized by element analysis, NMR and TG methods, and then was determined to be Ni(C4HsN2O3)2Cl2. Using an isoperibolic reaction calorimeter, the standard molar enthalpy of formation of Ni(GG)2Cl2(solid) has been determined to be -(1 674.66±2.02) kJ · mol^-1 at 298.15 K.  相似文献   

4.
This study investigates the reactions of Na2SO4 and its effects on iron and nickel reduction in the roasting of a high-iron and low-nickel laterite ore through gas composition, X-ray diffraction, and scanning electron microscope analyses. Results showed that a reduction reaction of Na2SO4 to SO2 was performed with roasting up to 600℃. However, no clear influence on iron and nickel reductions appeared, because only a small amount of Na2SO4 reacted to produce SO2. Na2SO4 reacted completely at 1000℃, mainly producing troilite and nepheline, which remarkably improves selective reduction of nickel. Furthermore, the production of low-melting-point minerals, including troilite and nepheline, accelerated nickel reduction and delayed iron reduction, which is attributed to the concurrent production of magnesium magnetite, whose structure is more stable than the structure of magnetite. Reduction reactions of Na2SO4 resulted in weakening of the reduction atmosphere, and the main product of Na2SO4 changed and delayed the reduction of iron. Eventually, iron metallization was effectively controlled during laterite ore reduction roasting, leading to iron mainly being found in wustite and high iron-containing olivine.  相似文献   

5.
Molybdenum disulfide (MoS2) is one of the most commonly used solid lubricants for Cu-Fe-based friction materials. Nevertheless, MoS2 reacts with metal matrices to produce metal sulfides (e.g., FeS) and Mo during sintering, and the lubricity of the composite may be related to the generation of FeS. Herein, the use of FeS as an alternative to MoS2 for producing Cu-Fe-based friction materials was investigated. According to the reaction principle of thermodynamics, two composites-one with MoS2 (Fe-Cu-MoS2 sample) and the other with FeS (FeS-Cu2S-Cu-Fe-Mo sample), were prepared and their friction behaviors and mechanical properties were compared. The results showed that MoS2 reacted with the Cu-Fe matrix to produce FeS, metallic ternary sulfides, and Mo when sintered at 1050℃. The MoS2-Cu-Fe and FeS-Cu2S-Cu-Fe-Mo samples thereby exhibited similar characteristics with respect to phase composition, density, hardness, and tribological behaviors. Micrographs of the worn surfaces revealed that the stable friction regime for both composites stemmed from the iron sulfides friction layers rather than from the molybdenum sulfides layers.  相似文献   

6.
Cold-bonded pellets, to which a new type of inorganic binder was applied, were reduced by H2–CO mixtures with different H2/CO molar ratios (1:0, 5:2, 1:1, 2:5, and 0:1) under various temperatures (1023, 1123, 1223, 1323, and 1423 K) in a thermogravimetric analysis apparatus. The effects of gas composition, temperature, and binder ratio on the reduction process were studied, and the microstructure of reduced pellets was observed by scanning electron microscopy–energy-dispersive spectrometry (SEM-EDS). The SEM-EDS images show that binder particles exist in pellets in two forms, and the form that binder particles completely surround ore particles has a more significant hinder effect on the reduction. The reduction equilibrium constant, effective diffusion coefficient, and the reaction rate constant were calculated on the basis of the unreacted core model, and the promotion effect of temperature on reduction was further analyzed. The results show that no sintering phenomenon occurred at low temperatures and that the increasing reaction rate constant and high gas diffusion coefficient could maintain the promotion effect of temperature; however, when the sintering phenomenon occurs at high temperatures, gas diffusion is hindered and the promotion effect is diminished. The contribution of the overall equilibrium constant to the promotion effect depends on the gas composition.  相似文献   

7.
Ammoxidation of 3,4-dichlorotoluene (DCT) to prepare 3,4-dichlorobenzonitrile (DCBN) over silica supported vanadium phosphorus oxide catalysts has been studied. On the VPO/SiO2 catalyst, the influence of the reaction temperature, the molar ratio of air/DCT, the molar ratio of NH3/DCT in the feed gas and the space velocity (v 1) on the conversion, yield and selectivity was observed. The most appropriate reaction condition is: reactionT=673 K,n(DCT):n(NH3):n(air)=1:7:30 andv 1=250 h−1. At this optimum reaction condition, the conversion of DCT is 97.8%; the molar yield of DCBN is 67.4%. It was found that the addition of element phosphorus can improve the yield of DCBN compared with VO/SiO2 catalyst. Foundation item: Supported by Youth Chen-Guang Project of the Committee of Science and Technology of Wuhan (20015005042) Biography: Huang Chi(1972-), male, Ph D, Lecture, research direction: ammoxidation.  相似文献   

8.
We reported an effective method to synthesize In2S3 and Cu-doped In2S3 two-dimensional ultrathin nanoflakes by the hydrothermal method through tuning the Cu/In molar ratio. The transmission electron microscope images showed that the products had ultrathin flake-like shape with wrinkling and rolling. The X-ray diffraction patterns indicated the crystal phase of nanoflakes was varied from β-In2S3 to tetragonal-CuInS2 as the Cu/In molar ratio was increased. The In2S3 nanoflakes exhibited absorption band at 450 nm, while new absorption peaks in turn appeared at 550 nm and 670 nm as the Cu/In molar ratio was increased. In addition, the two-dimensional ultrathin nanoflakes exhibited intense photocurrent response.  相似文献   

9.
为了揭示硼铁精矿的碳热还原机理,以高纯石墨为还原剂,进行硼铁精矿含碳球团等温还原实验,并采用积分法进行动力学分析.还原温度分别设定为1000、1050、1100、1150、1200、1250和1300益,配碳量即C/O摩尔比=1.0.当还原度为0.1<α<0.8时,温度对活化能和速率控制环节有重要影响:还原温度≤1100益时,平均活化能为202.6 kJ·mol-1,还原反应的速率控制环节为碳的气化反应;还原温度>1100益时,平均活化能为116.7 kJ·mol-1,为碳气化反应和FeO还原反应共同控制.当还原度α≥0.8时(还原温度>1100益),可能的速率控制环节为碳原子在金属铁中的扩散.碳气化反应是含碳球团还原过程中主要速率控制环节,原因在于硼铁精矿中硼元素对碳气化反应具有较强烈的化学抑制作用.  相似文献   

10.
The Cu2MoS4 nanoparticles were prepared using a relatively simple and convenient solid-phase process, which was applied for the first time. The crystalline structure, morphology, and optical properties of Cu2MoS4 nanoparticles were characterized using X-ray diffraction, X-ray photoelectron spectroscopy, field emission scanning electron microscopy, and UV-vis spectrophotometry. Cu2MoS4 nanoparticles having a band gap of 1.66 eV exhibits good photocatalytic activity in the degradation of methylene blue, which indicates that this simple process may be critical to facilitate the cheap production of photocatalysts.  相似文献   

11.
Ca0.6La0.2667TiO3 ceramics were prepared by conventional and microwave sintering techniques and their sinterability, microstructure, and microwave dielectric properties were investigated in detail for comparison. Densified Ca0.6La0.2667TiO3 ceramics were obtained by microwave sintering at 1350°C for 30 min and by conventional sintering at 1450°C for 4 h. An unusual phenomenon was found that some larger grains (grain size range: 8–10 μm) inclined to assemble in one area but some smaller ones (grain size range: 2–4 μm) inclined to gather in another area in the microwave sintered ceramics. The microwave dielectric properties of Ca0.6La0.2667TiO3 ceramics prepared by microwave sintering at 1350°C were as follows: dielectric constant (ɛ r) = 119.6, quality factor (Qf) = 17858.5 GHz, and temperature coefficient of resonant frequency (τ f) = 155.5 ppm/°C. In contrast, the microwave dielectric properties of the ceramics prepared by conventional sintering at 1450°C were ɛ r = 117.4, Qf = 13375 GHz, and τ f = 217.2 ppm/°C.  相似文献   

12.
Ti2AlNb-based alloys with 0.0wt%, 0.6wt%, and 2.0wt% carbon nanotube (CNT) addition were fabricated from spherical Ti-22Al-25Nb powder by sintering in the B2 single-phase region. Phase identification and microstructural examination were performed to evaluate the effect of carbon addition on the hardness of the alloys. Carbon was either in a soluble state or in carbide form depending on its concentration. The acicular carbides formed around 1050℃ were identified as TiC and facilitated the transformation of α2+B2 → O. The TiC was located within the acicular O phase. The surrounding O phase was distributed in certain orientations with angles of 65° or 90° O phase particles. The obtained alloy was composed of acicular O, Widmanstatten B2+O, and acicular TiC. As a result of the precipitation of carbides as well as the O phase, the hardness of the alloy with 2.0wt% CNT addition increased to HV 429±9.  相似文献   

13.
Understanding the reduction behaviors and characteristics of the end products of Fe-Cr-O systems is very important not only for maximizing the recovery of metals from stainless steel dust but also for the subsequent reuse in metallurgical process. The present work first predicted the possible products thermodynamically when FeCr2O4 was reduced by C. The reduction behaviors by graphite of three kinds of Fe-Cr-O systems, i.e., FeCr2O4, Fe2O3+Cr2O3, and Fe+Cr2O3, were then investigated in 1350–1550℃. Further, the microstructures of final products and element distribution conditions were examined. The results suggest that, thermodynamically, the mass of products for the carbothermal reduction of FeCr2O4 is a strong function of temperature, and the initial carbon content is used. More Fe-Cr-C solution and less residual carbon content are obtained at higher temperatures and lower nC:nO ratios (the initial molar ratio of C to O in the sample). Experimental data show that the sample amount tends to affect the reduction rate, and the residual carbon content strongly depends on nC:nO. With regard to the phases present in products during the reaction process, metal carbides tend to form in the initial stage, whereas Fe-Cr-C solution forms when the degree of reduction is sufficiently high.  相似文献   

14.
Nb–Mo–ZrB2 composites (V(Nb)/V(Mo)=1) with 15vol% or 30vol% of ZrB2 were fabricated by hot-pressing sintering at 2000℃. The phases, microstructure, and mechanical properties were then investigated. The composites contain Nb-Mo solid solution (denoted as (Nb, Mo)ss hereafter), ZrB, MoB, and NbB phases. Compressive strength test results suggest that the strength of Nb–Mo–ZrB2 composites increases with increasing ZrB2 content; Nb–Mo–30vol%ZrB2 had the highest compressive strength (1905.1 MPa). The improvement in the compressive strength of the Nb–Mo–ZrB2 composites is mainly attributed to the secondary phase strengthening of the stiffer ZrB phase, solid-solution strengthening of the (Nb, Mo)ss matrix as well as fine-grain strengthening. The fracture toughness decreases with increasing ZrB2 content. Finally, the fracture modes of the Nb–Mo–ZrB2 composites are also discussed in detail.  相似文献   

15.
Dinitrogen (N2) and proton (H ),which act as physiological substrates of nitrogenase,are reduced on FeMo-co of the MoFe protein. However,researchers have different opinions about their exact reduction sites. Nitrogenases were purified from the wild type (WT) and five mutants of Azotobacter vinelandii (Av),including Qα191K,Hα195Q,nifV-,Qα191K/nifV- and Hα195Q/nifV-; and the activities of these en-zymes for N2 and H reduction were analyzed. Our results suggest that the Fe2 and Fe6,atoms closed to the central sulfur atom (S2B) within FeMo-co,are sites for N2 binding and reduction and the Mo atom of FeMo-co is the site for H reduction. Combining these data with further bioinformatical analysis,we propose that two parallel electron channels may exist between the 8Fe7S cluster and FeMo-co.  相似文献   

16.
The Al2O3-(W,Ti)C composites with Ni and Mo additions varying from 0vol% to 12vol% were prepared via hot pressing sintering under 30 MPa. The microstructure was investigated via X-ray diffraction (XRD) and scanning electron microscopy (SEM) equipped with energy dispersive spectrometry (EDS). Mechanical properties such as flexural strength, fracture toughness, and Vickers hardness were also measured. Results show that the main phases Al2O3 and (W,Ti)C were detected by XRD. Compound MoNi also existed in sintered nanocomposites. The fracture modes of the nanocomposites were both intergranular and transgranular fractures. The plastic deformation of metal particles and crack bridging were the main toughening mechanisms. The maximum flexural strength and fracture toughness were obtained for 9vol% and 12vol% additions of Ni and Mo, respectively. The hardness of the composites reduced gradually with increasing content of metals Ni and Mo.  相似文献   

17.
This work described an amperometric hydrogen peroxide (H2O2) biosensor based on immobilization of hemoglobin (Hb) on a glassy carbon (GC) electrode modified by platinum nanoparticles, which was prepared by an in situ chemical reductive growth method. The electrochemical impedance measurements confirmed that the Hb was immobilized on the platinum nanoparticles-modified glassy carbon surface and has a synergistic effect with platinum nanoparti-cles in improving the catalytic reduction of H2O2. The Hb immobili...  相似文献   

18.
以La2 O3、CeO2和Sm2 O3为原料,采用高温固相反应法制备了Sm2 O3部分掺杂La2 Ce2 O7热障涂层陶瓷材料,其化学式为(SmxLa1-x)2Ce2O7.采用X射线衍射法研究了试样的物相结构,并通过对比各实验条件下制备的试样的X射线衍射图谱,对试样的掺杂比例、烧制温度及烧制时间进行了探究.结果表明,所制备试样为萤石结构,当掺杂摩尔比Sm:La为1:2或1:3时试样均能保持良好的相结构,以掺杂摩尔比Sm:La=1:2制备的( Sm0.33 La0.67)2 Ce2 O7材料在1600℃下具有良好的相稳定性,且其最佳制备条件为1550℃下烧制10 h,该材料是一种很有潜力的新型热障涂层陶瓷材料.  相似文献   

19.
Nanocrystalline powders of ZrO2-8mol%SmO1.5(8SmSZ), ZrO2-8mol%GdO1.5 (8GdSZ), and ZrO2-8mol%YO1.5(8YSZ) were prepared by a simple reverse-coprecipitation technique. Differential thermal analysis/thermogravimetry (DTA/TG), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Raman spectroscopy, and high-resolution transmission electron microscopy (HRTEM) were used to study the phase transformation and crystal growth behavior. The DTA results showed that the ZrO2 freeze-dried precipitates crystallized at 529, 465, and 467℃ in the case of 8SmSZ, 8GdSZ, and 8YSZ, respectively. The XRD and Raman results confirmed the presence of tetragonal ZrO2 when the dried precipitates were calcined in the temperature range from 600 to 1000℃ for 2 h. The crystallite size increased with increasing calcination temperature. The activation energies were calculated as 12.39, 12.45, and 16.59 kJ/mol for 8SmSZ, 8GdSZ, and 8YSZ respectively.  相似文献   

20.
A comparative study of the dissolution kinetics of galena ore in binary solutions of FeCl3/HCl and H2O2/HCl has been undertaken. The dissolution kinetics of the galena was found to depend on leachant concentration, reaction temperature, stirring speed, solid-to-liquid ratio, and particle diameter. The dissolution rate of galena ore increases with the increase of leachant concentration, reaction temperature, and stirring speed, while it decreases with the increase of solid-to-liquid ratio and particle diameter. The activation energy (E a) of 26.5 kJ/mol was obtained for galena ore dissolution in 0.3 M FeCl3/8.06 M HCl, and it suggests the surface diffusion model for the leaching reaction, while the E a value of 40.6 kJ/mol was obtained for its dissolution in 8.06 M H2O2/8.06 M HCl, which suggests the surface chemical reaction model for the leaching reaction. Furthermore, the linear relationship between rate constants and the reciprocal of particle radius supports the fact that dissolution is controlled by the surface reaction in the two cases. Finally, the rate of reaction based on the reaction-controlled process has been described by a semiempirical mathematical model. The Arrhenius and reaction constants of 11.023 s−1, 1.25×104 and 3.65×102 s−1, 8.02×106 were calculated for the 0.3 M FeCl3/8.06 M HCl and 8.06 M H2O2/8.06 M HCl binary solutions, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号