共查询到20条相似文献,搜索用时 9 毫秒
1.
为改善信息安全风险评价的精确度,利用改进的粒子群算法,提出了一种新的优化回归型支持向量机的信息安全风险评估方法。首先,通过模糊理论对信息安全风险因素进行量化预处理;其次,经过预处理后的数据输入到回归型支持向量机模型中;再次,利用改进的粒子群算法来优化和训练回归型支持向量机的参数,得到了优化后的信息安全风险评估模型;最后,通过仿真实验对该模型的性能进行验证。实验结果表明,提出的方法能很好地量化评估信息系统风险,提高了信息安全风险评估的精确性,是一种有效的评估方法。 相似文献
2.
基于支持向量回归机和粒子群算法的改进协同优化方法 总被引:1,自引:0,他引:1
研究基于支持向量回归机和粒子群算法的改进协同优化方法.阐述了协同优化方法和支持向量回归机方法基本原理,为有效解决系统级优化协调困难问题,改善收敛性能,提高收敛速度,采用支持向量回归机构造系统级约束条件的近似模型,引入粒子群算法求解系统级和学科级优化问题.仿真计算结果表明,设计的协同优化方法可有效求解多学科设计优化问题,... 相似文献
3.
支持向量机的参数选择决定了其学习性能和泛化能力,由于在参数的选择范围内可选择的数量是无穷的,在多个参数中盲目搜索最优参数是需要极大的时间代价,并且很难逼近最优。基于此,提出一种基于混沌粒子群的支持向量机参数选择算法。混沌粒子群优化算法是一种全局搜索方法,在选取SVM参数时,不必考虑模型的复杂度和变量维数.仿真表明,混沌粒子群优化算法是选取SVM参数的有效方法,可以取得令人满意的效果。 相似文献
4.
支持向量机(support vector machine,SVM)的参数选择对其性能有着重要的影响,使用穷举法优化参数需要大量的计算时间.为快速寻找最优参数组合,利用粒子群算法(particle swarm optimization,PSO)收敛速度快、简单易行等特点,将SVM参数作为粒子的解决方案.并利用图形处理器(graphics processing unit,GPU)并行化处理能力计算每个参数的分类准确率,从而提升了在一定的搜索空间内寻找最佳参数组合的计算速度.对UCI数据进行实验,对比结果显示,该方法能快速有效地获取优化结果. 相似文献
5.
本文提出一种SVM参数优化的新方法.应用遗传算法先对SVM参数进行初步的优化,把得到的优化结果邻近的一段区域再作为粒子群算法的搜索区间进行二次优化,以提高支持向量机的泛化能力,缩短SVM参数寻优的时间.仿真实验表示,该方法在样本数据缺失的情况下,同样具有较好的泛化能力. 相似文献
6.
支持向量分类机是数据挖掘的新方法,它对应于一个凸二次规划,该规划的不唯一解带来阈值不唯一问题。针对阈值不唯一问题,研究了在具体应用过程中如何修改模型参数,在不影响具体应用问题解决的前提下,提出使阈值唯一化的一个解决方法,同时给出参数变化后最优解的理论结果。这种唯一化的方法不仅为支持向量分类机数据扰动分析新的研究方向作基础准备,而且可以克服由不唯一阈值构成的多决策函数在实际应用问题中带来的困扰。 相似文献
7.
基于蚁群算法的支持向量机参数优化 总被引:5,自引:0,他引:5
针对支持向量机的参数对分类性能的影响,探讨了基于蚁群算法的支持向量机参数优化方法,建立了支持向量机参数优化模型,给出了基于网格划分策略的连续蚁群算法,并将其用于优化模型求解,通过对支持向量机的惩罚因子和径向基核函数进行优化,使支持向量机的分类性能最优.通过仿真和应用实例,验证了方法的有效性,得到了95%以上的分类正确率. 相似文献
8.
提出一种基于改进粒子群优化(PSO)算法的优化混合核支持向量机(SVM)算法(ILPSO), 解决了一般混合核SVM算法很难评定参数选择的问题. 该算法通过限定粒子的速度、 搜索空间和交叉算子等多种寻优策略加强其收敛特性, 得到了参数的最佳组合. 仿真实验表明, 该算法能更快速、 有效地获得参数的最优值. 相似文献
9.
基于蝙蝠算法的支持向量机参数优化 总被引:2,自引:0,他引:2
魏峻 《宝鸡文理学院学报(自然科学版)》2015,35(3):1-6
目的针对支持向量机(support vector machine,SVM)的参数选择的重要性,研究一种新的参数优化方法。方法介于蝙蝠算法的模型简单、全局搜索能力强等特点。本文提出基于蝙蝠算法(BA)的SVM参数优化方法,对SVM的惩罚参数和核参数进行优化。结果通过8个UCI标准数据库集的Matlab仿真实验,验证了算法的有效性和可靠性。结论本文方法搜索的最优参数较大地提高了SVM的分类精度,加强了SVM的学习和泛化能力,是一种有效及稳定的支持向量机参数优化方法。 相似文献
10.
为了进一步提高孪生支持向量机(Twin support vector machine, TWSVM)的自然语言文本分类准确度,提出了一种改进的粒子群优化(Particle swarm optimization, PSO)算法,并采用改进的PSO算法对TWSVM核心参数进行优化。根据迭代次数来选择自适应权重从而对传统PSO算法进行改进,以防止收敛速度过快而错过全局最优解。采用Word2Vec对自然语言样本进行向量化处理,并通过PSO算法对TWSVM惩罚因子进行优化求解,解决因为惩罚因子设置不合理而造成自然语言文本分类准确率不高的问题。试验证明,通过合理设置PSO算法的速度权重初始值和稳定值,结合自适应递减权重策略,能够获得较高的惩罚因子优化性能,从而提高TWSVM的分类准确率,相比于常见自然语言文本分类算法,PSO-TWSVM的分类准确率更高,均方根误差值更低,在自然语言文本分类中的适用度高。 相似文献
11.
介绍了PSO算法,结合电力系统无功优化问题的实际情况,针对其存在的易陷入局部最优点的缺点,提出了改进的PSO算法。该算法改变了初始化方法和粒子更新方法,在算法后期引入变异因子,并将问题分解成子问题进行处理。在IEEE-14节点系统的仿真计算中,改进PSO算法与其他人工智能算法相比,在较短时间内取得了更好的优化效果。 相似文献
12.
李太白 《渝西学院学报(自然科学版)》2011,(4):81-84
支持向量机的性能与核函数的参数及惩罚系数C有很大关系.利用Lozi’s映射的较好遍历性,在粒子群优化算法中引入Lozi’s映射的混沌思想,提出基于混沌粒子群优化算法的SVM参数优化方法.仿真实验表明,该算法能有效提高整个迭代搜索的收敛速度和精度,从而更好地优化SVM参数. 相似文献
13.
将小波函数引入支持向量机核函数,同时在支持向量机的学习算法上,引入了改进的粒子群优化算法,使得支持向量机的参数得到最优解,从而建立上市公司财务困境预警模型。实验结果表明,本文提出方法的预测准确率高于普通的小波支持向量机预警模型。 相似文献
14.
基于蚁群优化算法的支持向量机参数选择及仿真 总被引:2,自引:0,他引:2
基于支持向量回归机(SVR)模型的拟合精度和泛化能力取决于其相关参数的选取,以蚁群优化算法为基础,给出支持向量回归机参数优化的一种新方法。该方法以最小化k-fold交叉验证误差为目标,对支持向量回归机中的核参数σ和惩罚系数C由蚁群系统中的节点值体现,数值的优选通过蚂蚁对最优路径的选择进行确定。计算机仿真结果表明:与正交法、遗传算法等相比,该方法在参数优化方面有良好的鲁棒性能和较强的全局搜索能力;该方法用于青霉素发酵过程的建模研究,建模精度较高。 相似文献
15.
基于混沌粒子群的SVM参数优化算法 总被引:1,自引:0,他引:1
李太白 《重庆文理学院学报(自然科学版)》2011,30(4):81-84
支持向量机的性能与核函数的参数及惩罚系数C有很大关系.利用Lozi’s映射的较好遍历性,在粒子群优化算法中引入Lozi’s映射的混沌思想,提出基于混沌粒子群优化算法的SVM参数优化方法.仿真实验表明,该算法能有效提高整个迭代搜索的收敛速度和精度,从而更好地优化SVM参数. 相似文献
16.
基于PSO的模糊C均值聚类算法 总被引:4,自引:0,他引:4
在分析模糊C均值聚类算法存在不足的基础上,提出了一种新的聚类算法:基于粒子群的模糊C均值聚类算法.该算法利用粒子群强大的全局寻优能力,不仅克服了传统的模糊C均值聚类算法对初始值敏感、噪声数据敏感、易陷人局部最优的问题,而且有较快的收敛速度.试验证明,这种算法是一种很有潜力的模糊聚类算法. 相似文献
17.
18.
本文将支持向量分类机(SVC)引入到结构可靠度计算分析中,采用拉丁超立方抽样法进行初始输入训练样本的实验设计,将支持向量分类机作为响应面函数,并利用遗传算法进行参数优化,最后结合蒙特卡罗模拟提出了基于支持向量分类机的改进响应面法,其主要思想为:定义“重要性”判定函数,在迭代过程中,按判定函数值从抽样样本中选取新的训练样本,使支持向量分类机的模拟功能函数在对失效概率有较大贡献的区域内能更进一步地接近真实功能函数,从而大大提高可靠度分析的精度以及效率。 相似文献
19.
讨论了信息几何学中的子流形和嵌入概念,从信息几何学的角度分析了核函数的几何结构,通过共形变换构建数据依赖的核函数,使得特征空间在支持向量附近的体积元缩小,以改善支持向量分类机的机器性能,仿真结果表明了方法的有效性. 相似文献
20.
为提高可降解高分子材料降解模型仿真的准确程度,结合高分子材料降解的实际原则和所要考虑的各种因素,建立了适合优化的参数优化模型,并将粒子群优化算法(PSO)用于模型的求解.针对标准粒子群算法存在的一些不足,提出了一种改进的粒子群优化算法来求解最优值,改进的算法引入了动态自适应惯性权重和异步时变学习因子.采用5个标准测试函数对改进的粒子群算法进行了测试,并将算法应用于参数优化模型的求解.测试与试验结果表明:新算法有效地避免了过早陷入局部最优,提高了收敛速度和收敛精度,并且采用优化所得参数显著地提高了高分子材料降解模型仿真的精准度,有利于揭示降解机理的科学意义和指导实际医用器件的设计与生产. 相似文献