首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 562 毫秒
1.
利用算子 ${\mathcal I_{p,\alpha,\beta}^{\delta,\lambda,l}}f(z)$的性质研究了多叶解析函数子类 ${\mathcal I_{p,\alpha,\beta,\gamma,B}^{\delta,\lambda,l,\xi,A}}$ 的一些性质,得到子类 ${\mathcal I_{p,\alpha,\beta,\gamma,B}^{\delta,\lambda,l,\xi,A}}$的充分条件、从属关系、包含关系、卷积性质和不等式性质.  相似文献   

2.
在$^3P_0 $模型框架下, 计算$\Lambda _{c} (2880)^+$作为2D波激发态的衰变宽度和分支比, 确定其量子态并探究内部激发模式. 计算结果表明: $\Lambda _{c} (2880)^+$有可能是2D激发态$\Lambda _{{c}2} \big(\frac{3}{2}^+\big)$, $J^P=\frac{3}{2}^+$, 且$n_\rho =1$、$l_\lambda =2$, 为径向$\rho $激发、轨道$\lambda $激发的激发模式, 总衰变宽度${\it\Gamma}_{total} =18.53$ MeV, 分支比比值$R={\it\Gamma}(\Lambda _{c}(2880)^+\to \Sigma _{c}(2520)\pi)$/${\it\Gamma}(\Lambda _{c} (2880)^+\to \Sigma _{c} (2455)\pi)=0.16$; 也可能是2D激发态$\Lambda _{{c}2}^{'}\big(\frac{3}{2}^+\big)$, $J^P=\frac{3}{2}^+$, 且$n_\lambda =1$、$l_\lambda =2$, 为径向$\lambda $激发、轨道$\lambda $激发的激发模式, 总衰变宽度${\it\Gamma} _{total} =1.69$ MeV, 分支比比值$R={\it\Gamma}(\Lambda _{c} (2880)^+\to \Sigma_{c}(2520)\pi )$/${\it\Gamma} (\Lambda_{c} (2880)^+\to \Sigma_{c}(2455)\pi )=0.10$.  相似文献   

3.
研究了微分方程~$f^{(k)}+[P_{k-1}(\mathrm{e}^{z})+Q_{k-1}(\mathrm{e}^{-z})]f^{(k-1)}+\cdots+[P_{0}(\mathrm{e}^{z})+Q_{0}(\mathrm{e}^{-z})]f=0$和 ~$f^{(k)}+[P_{k-1}(\mathrm{e}^{z})+Q_{k-1}(\mathrm{e}^{-z})]f^{(k-1)}+\cdots+[P_{0}(\mathrm{e}^{z})+Q_{0}(\mathrm{e}^{-z})]f=R_{1}(\mathrm{e}^{z})+R_{2}(\mathrm{e}^{-z})$~的解以及它们的一阶导数与小函数的关系, 其中~$P_{j}(z)$~,~$Q_{j}(z)$~$(j=0,1,2,\cdots,k-1)$~和~$R_{i}(z)(i=1,2)$~是关于~z~的多项式.  相似文献   

4.
假设$\phi$是单位圆$D$上一个解析自映射,$X$是单位圆$D$上一个Banach空间. 定义$X$上复合算子:$C_{\phi}: C_{\phi}(f)=f o \phi$,对所有的$f\in X$. 本文利用$K-$Carleson测度刻画了$B_{\log}^{\alpha}(B_{\log,0}^{\alpha})$空间到$Q_{k}(p, q)(Q_{k, 0}(p, q))$空间的复合算子的有界性,以及$B_{\log}^{\alpha}(B_{\log,0}^{\alpha})$空间到$Q_{k,0}(p, q)$空间的复合算子的有界性和紧性.  相似文献   

5.
主要讨论了加权Hardy-Littlewood 平均算子$U_{\psi}$与BMO函数$b$生成的交换子在Herz型空间和Morrey型 Herz空间上的有界性,并给出了其在Morrey型 Herz空间上有界的充分条件是 $\int_0^1t^{-(\alpha+n/q_2-\lambda)}\psi(t)\log{\frac{2}{t}}dt\infty.$ 若$\alpha=0$,$\lambda=0$,$q_1=q_2=p1$,则$\int_0^1t^{-(\alpha+n/q_2-\lambda)}\psi(t)\log{\frac{2}{t}}dt=\int_0^1t^{-n/p}\psi(t)\log{\frac{2}{t}}dt\infty$, 此时交换子$U_{\psi}^b$是$L^p(R^n)$空间上的有界算子.  相似文献   

6.
研究了关于$k$-折对称点的近于凸函数和拟凸函数子类的邻域。对于 ${\mathcal S_{s,\ n}^{(k)}}[A, B]$ 或者 ${\mathcal C_{s,\ n}^{(k)}}[A, B]$中的函数$f$, 得到了使得所有函数$g\in{\mathcal N_{\delta}}(f)$包含在 ${\mathcal S_{s,\ n}^{(k)}}[A, B]$内的充分条件,且 $\delta$ 是最好的可能。  相似文献   

7.
只有与 G 同构的图才有相同的谱, 则称图 G 称为谱唯一确定的. 本文证明了, $K_{n}-E(lP_{2})$ 和 $K_{n}-E(K_{1,l})$ 是谱唯一确定的.  相似文献   

8.
为解决与毕达哥拉斯方程x2+y2=z2相关的整数矩阵方程问题, 利用矩阵的基本运算把整数矩阵方程问题转化成不定方程求解的问题, 从特殊情形逐步推广到一般情形, 研究了与毕达哥拉斯方程相关的一类二阶整数矩阵方程${\mathit{\boldsymbol{X}}^2} + {\mathit{\boldsymbol{Y}}^2} = \lambda \mathit{\boldsymbol{I}} $ ($\lambda \in \mathbb{Z}, \boldsymbol{I} $为单位矩阵), 并得到其全部解( X , Y ), 类似可得二阶整数矩阵方程${\mathit{\boldsymbol{X}}^2} - {\mathit{\boldsymbol{Y}}^2} = \lambda \mathit{\boldsymbol{I}} $的全部解.  相似文献   

9.
设$G$是无限循环群被有限生成Abel群的中心扩张, $T$是$G$的中心$\zeta G$的挠子群. 如果$T$的阶与$\zeta G/(G''\oplus T)$的挠子群的阶互素, 那么 群$G$可分解为$G=S\times F\times T$, 其中 $$ S=\left\{\left( \begin{array}{cccccc} 1&d_1\alpha_{1}&d_2\alpha_{2}&\cdots&d_r\alpha_{r}&\alpha_{r+1}\0&1&0&\cdots&0&\alpha_{r+2}\\vdots&\vdots&\vdots& &\vdots&\vdots\0&0&0&\cdots&0&\alpha_{2r}\0&0&0&\cdots&1&\alpha_{2r+1}\0&0&0&\cdots&0&1 \end{array} \right)\left| \begin{aligned} \\\alpha_{j}\in \mathbb{Z} \\~\ \end{aligned} \right. \right\}, $$ 这里$d_i$都是正整数, 满足$d_1\mid d_2\mid \cdots \mid d_r$, $F$是秩为$s$的自由Abel群, $T$是有限Abel群, $T=\mathbb{Z}_{e_1}\oplus \mathbb{Z}_{e_2}\oplus\cdots\oplus\mathbb{Z}_{e_t}$, $e_1>1$, 满足$e_1\mid e_2\mid \cdots \mid e_t$, 并且$(d_1, e_t)=1$. 进一步, $(d_1, d_2,\cdots , d_r; s;e_1,e_2,\cdots , e_t)$ 是群$G$的同构不变量, 即若群$H$也是无限循环群被有限生成Abel群的中心扩张, $T_{H}$是$\zeta H$的挠子群. 如果$T_{H}$的阶与$\zeta H/(H''\oplus T_{H})$的挠子群的阶互素, 那么$G$同构于$H$的充要条件是它们有相同的不变量. 显然, 这个结果涵盖了有限生成Abel群的结构定理.  相似文献   

10.
设$d,\ m$ 与 $n$ 均为正整数. 在1915年, Theisinger证明当$n\ge 2$时,$n$次调和和 $\sum_{k=1}^n\frac{1}{k}$不是一个整数. 在1946年,Erd\H{o}s和Niven 证明仅有有限多个$n$, 使得关于$1/m, 1/(m+d),..., 1/(m+nd)$ 的一个或多个初等对称函数是整数.在2015年, Wang 和 Hong 证明当 $n\ge 2$ 时,$1,1/3,...,1/(2n-1)$ 的所有初等对称函数均非整数.在本文中, 我们证明如下结果成立: 如果$n\ge 2$为正整数, 那么对任意$n$个正整数 $s_0,..., s_{n-1}$, 关于$1,1/3^{s_{1}},...,1/(2n-1)^{s_{n-1}}$的第二类初等对称函数 $$\sum\limits_{0\le i相似文献   

11.
利用亚纯函数值分布理论和正规族理论、线性代数理论及研究方法,研究了全纯曲线族分担超平面的正规性。设\begin{document}$ \mathcal{F} $\end{document}是从\begin{document}$ D\subset \mathbb{C} $\end{document}到\begin{document}${\mathbb{P}}^{3}\left(\mathbb{C}\right) $\end{document}的一族全纯映射,\begin{document}$ {H}_{0}$\end{document}和\begin{document}${H}_{l}({H}_{l}\ne {H}_{0}) $\end{document}是\begin{document}$ {\mathbb{P}}^{3}\left(\mathbb{C}\right) $\end{document}上处于一般位置的超平面,\begin{document}$l=1,2,\cdots,8 $\end{document}。假定对于任意的\begin{document}$ f\in \mathcal{F} $\end{document}满足条件:\begin{document}$f(\textit{z})\in H_l$\end{document}当且仅当\begin{document}$\nabla f \in H_l=\{x\in {\mathbb{P}}^{3}\left(\mathbb{C}\right): $\end{document}\begin{document}$ \langle x, \alpha_l \rangle=0\}$\end{document};若\begin{document}$f(\textit{z})\in H_l $\end{document}的并集,有\begin{document}$|\langle f\left(z\right),{H}_{0}\rangle|/(\|f\|\|{H}_{0}\|)$\end{document}大于或等于\begin{document}$\delta $\end{document}。\begin{document}$0 < \delta < 1 $\end{document},\begin{document}$\delta $\end{document}是常数,则 \begin{document}$ \mathcal{F} $\end{document}在D上正规。  相似文献   

12.
研究了亚纯函数的微分多项式f~nf~′和g~ng~′IM分担一个多项式P(z)的唯一性问题,证明了当n22且多项式P(z)的次数小于等于n时,则f(z)=tg(z),或者f(z)=λ_1e~(λ∫P(z)dz),g(z)=2e~(-λ∫P(z)dz),其中,t,λ1λ2,λ为常数。  相似文献   

13.
本文研究了一阶周期边值问题■多个正解的存在性,其中λ>0是一个参数,a∈C(R,[0,∞))是一个T-周期函数且∫T0a(t)dt>0,f∈C([0,∞),(0,∞))且单调递增.在■的条件下,本文证明存在一个λ*>0,使当0<λ<λ*时问题不存在正解;当λ=λ*时问题至少存在一个正解;当λ>λ*时问题至少存在两个正解.主要结果的证明基于上下解方法和Leray-Schauder度.  相似文献   

14.
设H是n维复Hilbert空间,Q是定义在H上的正交投影.任给H的子空间M,设dim M=r,在空间分解H=M⊕M⊥下,Q=(A B·B D),其中A∈B(M),B∈B(M⊥,M),D∈B(M⊥).利用算子分块的技巧,对空间进一步分解,讨论了Q的子矩阵A,B,D的性质及其之间的关系以及M上的正交投影P与Q之间的关系.得...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号