共查询到15条相似文献,搜索用时 62 毫秒
1.
2.
利用递归序列,同余式证明了丢番图方程x 3+1=37y2,仅有整数解(x,y)=(-1,0),(11,±6). 相似文献
3.
关于丢番图方程X^3+1=DY^2 总被引:15,自引:0,他引:15
本文证明了X^3+1=DY^2(0〈D〈100,不含平方因子,且被6k+1形素数整除,D≠7,14,35,37,57,65,86,91无非平凡整数解。 相似文献
4.
5.
牟善志 《哈尔滨师范大学自然科学学报》1997,(5)
本文证明了丢番图方程x4-4x2y2+y4=526仅有正整数解(x,y)=(1,5)和(5,1),从此又推得方程x4-10x2y2+y4=-263仅有正整数解(x,y)=(2,3)和(3,2)。 相似文献
6.
7.
8.
9.
10.
11.
设D是无平方因子且不能被3或6l+1之型素数整除的正整数,用初等方法讨论了Diophantine方程x 3+113=Dy2整数解的情况,并且给出x<104时方程x3+113=Dy2的所有整数解. 相似文献
12.
13.
14.
关于Diophantine方程x~3+1=py~2 总被引:2,自引:0,他引:2
利用同余理论,得出了丢番图方程x 3+1=py2无正整数解的一个充分条件.设p是奇素数,证明了:当p=3(24k+19)(24k+20)+1,其中k是非负整数,则方程x 3+1=py2无正整数解. 相似文献
15.
关于不定方程x~3+1=86y~2 总被引:2,自引:0,他引:2
关于不定方程x3+1=86y2是一个未解决的方程,利用递归数列,同余式以及Pell方程的解的性质以及maple的小程序等方法,证明了不定方程x3+1=86y2,仅有整数解(x,y)=(-1,0),(7,±2)。 相似文献