共查询到15条相似文献,搜索用时 62 毫秒
1.
设G是一个群,φ是G到自身的一个双射,映射φ叫做G的一个广义自同构映射,如果对a,b∈G,等式(ab)φ=aφbφ和(ab)φ=bφaφ至少有一个成立.通过研究群的广义自同构群,该文得到了若干结果,推广了一些相关的经典结论. 相似文献
2.
设G1,G2是群,映射f:G1→G2叫做G1到G2的广义同态映射,如果a,b∈G1,等式(ab)f=afbf和(ab)f=bfaf至少有一个成立.通过研究群的广义自同构群,该文得到了若干结果,推广了一些相关的经典定理,包括Gaschutz关于自同构群的一个定理等. 相似文献
3.
广义自同构与有限群结构 总被引:3,自引:1,他引:3
设G1,G2是群,映射f:G1→G2叫做G1到G2的广义同态映射,如果任意a,b∈G1,等式(ab)^f=a^fb^f和(ab)^f=b^fa^f至少有一个成立.利用广义同态映射,以统一的观点处理互为对称的同态映射与反同态映射,所得相关结果在一定程度上揭示了广义自同构与有限群结构的联系. 相似文献
4.
设G1,G2是群,映射φ:G1→G2叫做G1到G2的广义同态映射,如果a,b∈G1,等式(ab)φ=aφbφ和(ab)φ=bφaφ,至少有一个成立.称群G广义作用在集合Ω上,如果群G到变换群SΩ有一个广义同态映射.通过研究有限群在集合上的广义作用及广义自同构群,得到了若干结果,推广了一些相关的经典定理. 相似文献
5.
6.
对任意奇素数p-引入了一类所谓的算术p-群,并确定了其自同构群和外自同构群,所得结果推广具有一个循环极大子群的p-群的相应结论。 相似文献
7.
半直积的外自同构群 总被引:2,自引:0,他引:2
靳平 《山西大学学报(自然科学版)》2002,25(1):20-22
设有限群 G=N H为半直积 ,本文借助于 N和 H的自同构求出了 G的外自同构群阶的公式 ,并给出了若干应用。 相似文献
8.
设G是群,φ:G→G为自同构.若对任意的x∈G,有φ(x)x=xφ(x),则称φ为G上的交换自同构.设Tn是域F上所有n×n阶可逆上三角矩阵全体按矩阵乘法构成的群,n≥3,F*为F中非零元全体组成的乘法群.证明了映射φ:Tn→Tn为Tn的交换自同构当且仅当存在群同态σi:F*→F*,1≤i≤n,使得φ(A)=(∏ni=1σi(aii))A,对A=(aij)n×n∈Tn,并且对任意的k=1,2,…,n,以及任意的a∈Imσk,方程xσ1(x)σ2(x)…σn(x)=a在F*中存在唯一解. 相似文献
9.
广义四元数群的全自同构群 总被引:3,自引:1,他引:3
一个有限群Q4n称为广义四元群,若Q4n=〈a,b|a2n=1,b2=an,ab=a-1〉,n≥3.根据广义四元群Q4n的结构和性质,利用群的扩张理论,先确定了Q4p与Q4pm的全自同构群的结构,由此归纳出一般的广义四元群Q4n的全自同构群的结构如下:设p1为n的最小素因子,n=pr11 pr22…prkk为n的素数分解,那么(a)当p1>2时,Aut(G)=〈α〉:(〈η1〉×〈η2〉×…×〈ηk〉);(b)当p1=2时,Aut(G)=〈α〉:(〈η2〉×…×〈ηk〉), r1=1〈α〉:(〈γ〉×〈η2〉×…×〈ηk〉), r1=2〈α〉:(〈μ〉×〈ν〉×〈η2〉×…×〈ηk〉), r1≥3. 相似文献
10.
有限群G的Coleman外自同构群OutCol(G)是否为p′-群这个问题是在研究整群环的同构问题时产生的。研究结果得到了一些OutCol(G)是p′-群的充分条件。 相似文献
11.
设G为有限p-群且有一个循环的极大子群,其中p为奇素数。本得到了G的自同构群Aut(G)的一个表现,并由此证明了Aut(G)的Sylow p-子群不仅正规而且与G同阶但不同构,以及Aut(G)可写为其Sylow p-子群与一个p-1阶循环子群的半直积。 相似文献
12.
广义作用与有限群结构 总被引:1,自引:1,他引:0
设G和H是给定的有限群,若φ是H到Gut(G)内的一个同态映射,就称φ为H在G的广义作用.通过研究群的广义作用,该文得到了若干结果,推广了群作用的某些结果. 相似文献
13.
提出了广义特征子群和广义特征单群的概念,研究了有限群的若干广义特征子群以及广义特征单群,推广了一些熟知的结果. 相似文献
14.
借助循环环的性质和群的同态性质证明了循环环的满同态映射的一个性质,并借助这个性质证明了循环环的自同构群是交换群和循环环的自同构群的阶的计算公式.讨论了无限循环环的自同构群.设p、q为不同素数,分别讨论了自同构群为单位元群、素数阶群、pq阶群和p2阶群的有限循环环的类型. 相似文献