首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 140 毫秒
1.
针对一维定常对流扩散反应方程,提出了一种四阶精度的有理型紧致差分格式,其局部截断误差为O(h4);然后通过Richardson外推技术和算子插值法将本文格式的精度提高到六阶.因为格式仅涉及到3个网格基架点,所以对于Dirichlet边值问题,由差分格式可得三对角线性方程组,可采用追赶法进行求解.最后通过数值算例验证了本文方法的精确性和可靠性.  相似文献   

2.
一种求解一维对流扩散方程的高精度紧致隐式差分格式   总被引:1,自引:0,他引:1  
提出了数值求解一维非定常对流扩散方程的一种两层四阶紧致隐式差分格式,其截断误差为O(τ^2+h^4).采用von Neumann方法证明了格式是无条件稳定的,并且由于每一时间层上只用到了3个网格点,所以可直接采用追赶法求解差分方程.数值实验结果验证了该方法的精确性和可靠性.  相似文献   

3.
提出了数值求解一维非稳态对流扩散反应方程的一种隐式差分格式。首先将模型方程利用指数函数转化为对流扩散方程,构造它的差分格式,然后对差分方程的系数进行相应处理,并进行回代,得到对流扩散反应方程的隐式差分格式,其截断误差为O(τ2+h2),采用von Neumann方法证明了格式是无条件稳定的,并且由于每一时间层上只用到了3个网格点,所以可直接采用追赶法求解差分方程,数值结果显示了算法的有效性。  相似文献   

4.
首先,针对一维对流扩散反应方程,借助截断误差余项修正的方法,将中心差分格式余项中未知函数的三阶和四阶导数项利用一阶导数的表达式来代替,从而提出一种新的紧致差分格式,具有四阶精度.然后,为了简化计算,对格式常系数形式的耗散误差和色散误差进行分析,证实该格式的低耗散性.接着,将该方法推广到二维,运用降维的思想转化成2个一维形式的定常对流扩散反应方程,并用求解一维方程的方法,离散后相加即得二维对流扩散反应方程的紧致差分格式.最后,通过数值实验验证本文格式的精确性和可靠性.  相似文献   

5.
提出一种消除对流扩散反应方程中对流项的处理技巧,结合中心差分格式的新方法与相同节点的迎风差分格式相比具有更好的精度,该方法很容易与Padé格式相结合,构造出具有四阶精度的无条件稳定的高阶差分格式.数值实验表明,新方法具有很好的精度和健壮性,并且可以有效求解对流占优问题.  相似文献   

6.
求解扩散方程的一种高精度隐式差分方法   总被引:4,自引:0,他引:4  
利用一阶微商和二阶微商的四阶紧致差分逼近公式,推导出了数值求解一维扩散方程的两种新的高精度隐式紧致差分格式,其截断误差分别为O(τ^2 h^4)和O(τ^4 h^4).通过Fourier分析方法证明了格式O(τ^2 h^4)是无条件稳定的,而格式O(r^4 h^4)是无条件不稳定的.并且由于每一时间层上只用到了3个网格点,所以差分方程可采用追赶法直接进行求解.  相似文献   

7.
基于非均匀网格,提出了一种求解一维定常对流扩散反应方程的高精度紧致差分格式。首先采用坐标变换方法将原方程由物理空间的非均匀网格转换为计算空间的均匀网格,然后给出一阶导数和二阶导数在均匀网格上的中心差分逼近式,并结合变换后的方程,得到了定常对流扩散反应方程具有四阶精度的紧致差分格式。最后,通过数值算例验证了该方法的精确性和高分辨率的特点。数值实验结果表明,对于所研究问题,该方法较不进行坐标变换而直接在物理域上建立的非均匀网格上的高阶紧致格式具有更高精度。  相似文献   

8.
利用二阶微商的三次样条四阶紧致差分逼近公式,推导出两种数值求解二维扩散反应方程的两层9点加权隐式紧致差分格式.当θ=1/2时,该格式在时间和空间方向上分别达到二阶和四阶精度.通过Fourier方法讨论知,当1/2≤θ≤1时,格式是无条件稳定的;当0≤θ<1/2时,格式是条件稳定的.为了克服传统迭代法在求解隐格式方面的困难,差分方程采用多重网格方法进行求解并将本文格式的结果与P-R格式及C-N格式下的结果进行比较.数值实验结果验证本文方法的精确性和可靠性及多重网格方法的效率.  相似文献   

9.
求解波动方程的高精度紧致隐式差分方法   总被引:1,自引:0,他引:1  
基于二阶微商的二阶中心差商和四阶紧致差商逼近公式及其加权平均思想,推导出了数值求解一维波动方程的2种精度分别为O(x^2+h^4)和O(x^4+h^4)的三层隐式紧致差分格式,以夏与之相匹配的第一个时间步的同阶离散格式,并采用Fourier方法分析了格式的稳定性.由于每一时间层上最多只用到了3个网格点,所以可采用追赶法直接求解差分方程.数值实验结果验证了所得方法的精确性和可靠性.  相似文献   

10.
扩散方程通常用来描述扩散现象中的物质密度的变化或者与扩散相类似的现象,针对二维扩散方程提出了一种高精度紧致差分格式,该格式基于四次样条函数对空间变量进行离散,对时间导数采用(2,2)Padé逼近,从而得到了时间和空间均为四阶精度的紧致差分格式.然后证明了该格式是无条件稳定的.最后通过数值实验,验证方法的精确性和稳定性.  相似文献   

11.
基于二阶导数的四阶Padé型紧致差分逼近式,并结合原方程本身,得到了二维Helm-holtz一种四阶精度的紧致差分格式.该格式在每个空间方向上只涉及到三个点处的未知量及其二阶导数值,边界处对于二阶导数利用四阶显式偏心格式.然后,利用Richardson外推法、算子插值法及二阶导数在边界点处的六阶显式偏心格式,将本文构造的二维Helmholtz方程四阶紧致差分格式的精度提高到六阶.最后,通过数值实验验证了本文方法的精确性和可靠性.  相似文献   

12.
提出了数值求解二维泊松方程基于非均匀网格的高阶紧致差分格式,通过选取合适的网格分布参数求解具有边界层的数值算例,空间可以达到四阶精度.并与均匀网格上的计算结果进行比较,充分验证了本文非均匀网格高精度紧致格式的精确性和优越性.  相似文献   

13.
引入耗散项的方法,构造一个条件稳定的显格式,其稳定性条件为r≤1/2, 截断误差可达到O(τ2+h4+τ2/h2).当τ=O(h)时,此格式可逼近精度,特别当τ=O(h2)时,格式达到二阶精度.数值例子表明,所建立的差分格式是有效的.  相似文献   

14.
三维热传导方程恒稳定的高精度半显式差分方法   总被引:2,自引:2,他引:0  
提出了数值求解三维热传导方程的一种无条件稳定的高精度半显式差分方法,该方法可以显式计算且计算量小,截断误差为O(τ2+h4).数值算例验证了方法的精确性和可靠性.  相似文献   

15.
利用不同节点处空间导数的线性组合等于函数值线性组合,或者利用方程自身,得到了梁振动方程的3个模板小、精度高的高阶紧致差分格式,通过分析得到它们都是无条件稳定的。最后借助数值算例验证了理论分析的正确性,格式具有非常高的精度。  相似文献   

16.
提出了三维Helmholtz方程等距网格上的一种四阶精度19点紧致差分格式。结合多重网格V循环算法和红黑高斯-塞德尔迭代法进行求解,并与二阶中心差分格式进行了比较。计算结果验证了本文方法的精确性和有效性。  相似文献   

17.
采用分裂技巧研究了2维的Ginzburg-Landau方程构造高效的数值格式.把2维Ginzburg-Landau方程变成线性和非线性问题以避免求解耦合的非线性方程组.为减少存储量和计算量,对线性问题进一步运用局部1维方法,把它分解为2个1维问题求解.所得到的数值格式具有高效、高精度等数值特征.最后,用数值算例模拟了2维Ginzburg-Landau方程所描述的物理现象,新方法具有较大的优越性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号