首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
道路交通安全问题是一个受各种因素影响的复杂的系统问题,受不同的驾驶员特性、汽车性能、道路条件及环境之间的相互影响。对速度的分析应该从实际的行驶环境出发,结合车辆行驶轨迹和其他事故致因系统分析。本文通过实车试验的方法对设置纵向减速标线的山区城市道路交叉口路段和未设置标线的对比路段的交通流量、区间速度、驾驶员瞳孔指标和轨迹横向偏移量等试验数据进行采集,再结合山区城市道路交叉口处的交通特性和道路基本参数等数据,分析试验路段的交通流特性、驾驶员生理行为指标和轨迹规律。试验表明:在城市道路交叉口设置纵向减速标线后车辆在试验路段和对比路段的偏移量分布频率最大值42.62%和38.18%在(0.5,1]区间内;在山区城市道路交叉口段设置纵向减速标线可以提前警告驾驶员控制车速等有利的影响,提高交叉口行驶安全性。  相似文献   

2.
道路交通安全问题是一个受各种因素影响的复杂的系统问题,受不同的驾驶员特性、汽车性能、道路条件及环境之间的相互影响。对速度的分析应该从实际的行驶环境出发,结合车辆行驶轨迹和其他事故致因系统分析。通过实车试验的方法对设置纵向减速标线的山区城市道路交叉口路段和未设置标线的对比路段的交通流量、区间速度、驾驶员瞳孔指标和轨迹横向偏移量等试验数据进行采集,再结合山区城市道路交叉口处的交通特性和道路基本参数等数据,分析试验路段的交通流特性、驾驶员生理行为指标和轨迹规律。试验表明:在城市道路交叉口设置纵向减速标线后车辆在试验路段和对比路段的偏移量分布频率最大值为42.62%和38.18%在(0.5,1]区间内;在山区城市道路交叉口段设置纵向减速标线可以提前警告驾驶员控制车速等有利的影响,提高交叉口行驶安全性。  相似文献   

3.
高速公路中间带安全侧向净距值   总被引:1,自引:0,他引:1  
为了研究高速公路中间带安全侧向净距值,在具有代表性的试验路段实测了超车道上行驶车辆的行驶速度与相应的内侧净距.用数理统计的方法研究了不同车型的车辆行驶时的内侧净距与车速的关系,分析了路缘石对内侧净距的影响,从安全角度提出了高速公路中间带安全侧向净距值.研究结果表明:汽车行驶时的内侧净距与车速呈线性关系;位于护栏外侧的凸起路缘石,对汽车行驶的安全侧向净距有一定影响;中国许多正在运营的采用分设型布设中央分隔带护栏的高速公路安全侧向净距不足.  相似文献   

4.
为了研究当前常见限(减)速设施在城市道路的实际应用效果,通过断面雷达仪测速法采集车辆在通过限(减)速设施前后的车速数据,研究了实际行驶过程中限(减)速设施对自由流状态下车辆的减速效果。结果表明:电子执法型限(减)速设施效果明显,超速通过率约为3.2%;振动减速标线有一定减速效果,超速通过比例约为7.8%;限速标志减速效果最差,超速通过率约为29%。可见城市道路上电子执法型限(减)速设施限速效果最好,振动减速标线限速效果受设置区域长度和振动程度影响,限速标志减速效果不佳。通过给出的当前城市道路限速值与车辆通过限(减)速设施时车速关系模型表明:随着道路限速值的增加,车辆正常通过限(减)速设施的第85位车速越高,超速比例随之增加。且限(减)速设施类型不同,第85位车速变化程度存在差异,限速标志型变化最大。研究结论可为城市道路车速管控提供理论支持。  相似文献   

5.
针对高速公路桥隧结合段特有行车环境,考虑行驶速度、桥面侧风、天气条件、车辆类型、道路线形等影响因素,根据车辆动力学性能确定仿真试验的响应指标,建立安全评价指标体系;采用TruckSim、CarSim车辆动力学仿真软件对车辆驶出隧道进入桥梁这一过程进行模拟分析,获取不同车型在不同天气下的侧向偏移量、偏航角、横摆角速度、侧向加速度、最大偏移量位置等响应指标的变化规律;采用组合赋权法确定各响应指标权重,通过模糊综合评价方法计算多场景下的综合风险值,划分安全风险等级;基于响应面法建立行车安全风险预测模型,并对河南省渑池—洛宁高速公路桥隧结合段进行交通安全性分析。研究结果表明:在桥隧结合段行驶过程中,对小型车行车安全而言,行驶速度影响最大,其次是天气条件,桥面侧风影响最小;对大型车行车安全而言,桥面侧风影响最大,其次是天气条件,行驶速度影响最小。提出的安全车速建议值可为制定动态车速限制策略提供技术支持。  相似文献   

6.
合理设置城市道路指路标志,能有效避免驾驶员在识读完标志信息后因操作距离过短而引发的安全问题。本文从动态视认性出发,分析了在城市道路中驾驶员认读指路标志的反应操作过程,考虑到进口车道数影响,计算分析了车辆在不同道路等级、不同设计车速下指路标志的设置位置,并给出推荐值,期望为城市指路标志设置提供参考,进而提高行车安全性,减少无效交通。  相似文献   

7.
采用多元线性回归的方法,分别建立了平均车速、15%位车速、85%位车速与车道数、限速值、车道位置、车型、道路饱和度、大型车比例等6个因素之间的回归模型.然后,采用Logistic回归的方法,建立了车速选择的回归模型.分析结果表明:对于双向六车道普通公路,依据15%位车速,对超车道进行最低车速限制;依据85%位车速,对最高车速实施可变限速、分车道限速和分车型限速.外侧车道上的大型车在饱和度较高的情况下,容易选择低速行驶;双向两车道或四车道公路上的小型车在饱和度较低的情况下,容易选择高速行驶.根据车辆选择高速行驶的概率,设置不同的限速设施.利用这2个回归模型可以计算出特定道路条件下的15%位车速、85%位车速以及车辆选择高速行驶和低速行驶的概率,为普通公路在限速及限速设施选择方面提供依据.  相似文献   

8.
为提高长大下坡道路大型车辆行车安全,建立了重载货车整车模型和道路模型,分析了载重量、挂档档位、路面坡度与挂档车速之间的关联和影响,探讨了挂档车速的波动特性及挂档机理,得到了不同坡度各档位挂档车速变化范围,提出了在挂档决策基础上结合驾驶人操纵行为特征谱的新型仿真模式。仿真结果表明:在挂档决策基础上结合驾驶人操纵行为特征谱分析长大下坡车辆行驶安全更具可靠性,从而为驾驶人挂档决策、道路行驶安全研究提供依据。  相似文献   

9.
随机侧向风影响汽车操纵稳定性,增加驾驶操作难度.针对侧向风干扰,在线性二自由度模型的基础上提出基于自抗扰技术的汽车主动前轮控制器,消除侧向风干扰对汽车行驶的影响.在Matlab软件中建立了人-车-路闭环仿真模型,用以控制Car Sim四轮车辆模型进行双移线道路仿真试验.Car Sim与Simulink联合仿真结果表明:在侧向风干扰下,自抗扰控制器能很好控制车辆模型完成双移线道路仿真试验,且响应的各项性能指标均优于无风情况;同时,控制器对车速适应性好,对模型精度要求不高,鲁棒性强.主动前轮控制器能有效抗侧向风干扰,改善汽车的操纵稳定性和行驶安全性.  相似文献   

10.
为使分布式驱动电动汽车在不同工况下能够保持直线行驶,摒弃传统的单一控制变量和单一控制模式的方法. 基于CarSim和Matlab/Simulink联合仿真平台,针对车辆在不同工况下的受力特点和不同控制方法的控制特点,提出双模式控制策略. 即在车辆行驶速度较低且侧向风速度较小时,采用带有加权比重的侧向位移和横摆角联合控制的终端滑模变结构控制模式;在车速较高且侧向风速度较大时,利用模糊控制对无法建立精确数学模型的系统具有很好控制效果的特点,对横摆角采用模糊控制模式. 研究结果表明,车辆在低速行驶和高速行驶,有侧向风和无侧向风的情况下,均能很好地维持直线行驶. 该控制策略比传统的单变量侧向位移终端滑模控制和单变量横摆角终端滑模控制的效果都要好,精度更高,大大地提高了车辆的行驶安全性.  相似文献   

11.
 针对侧向风作用下跨座式城市单轨车辆的运行平稳性问题,利用多体动力学软件Adams 建立跨座式单轨车辆“车体-轮胎-轨道梁”耦合系统动力学模型,基于空气动力学原理,研究了侧向风风压中心随着车辆运动过程的变化情况,并对不同车速、风速、轨道梁线形下跨座式单轨车辆在侧向风作用时的运行平稳性进行仿真计算和对比分析,结果表明,车速和风速的变化对在侧向风条件下的跨座式单轨车辆横向加速度影响很大,会进一步影响车辆的运行平稳性,且当车速或风速过大时,车辆不满足平稳性指标,会发生失稳现象。  相似文献   

12.
为了缓解雨雪气象条件下桥隧连接段的交通安全运行问题,采用Carsim仿真分析软件,建立车辆-道路三维模型,通过侧向偏移量和横摆角速度2个评价指标,系统地模拟分析雨雪气象条件下C级标准车在桥隧连接段行驶的稳定性,定量分析行车速度、路面摩擦因数、圆曲线半径对桥隧连接段行车稳定性和车辆横向稳定性能的影响。研究结果表明:侧向偏移量与横摆角速度对行车稳定性的评价具有一致性,当侧向偏移量和横摆角速度指标的值越小、越稳定,车辆行驶越安全;车辆速度与行车稳定性呈负相关,路面摩擦因数和圆曲线半径与行车稳定性呈正相关,即降低车速、增大路面摩擦因数和圆曲线半径均可有效地减小车辆的侧向偏移量。在雨雪气象条件下桥隧连接段的特殊行车环境下,车辆设计速度由80降低至75 km/h,降低了6.25%;路面摩擦因数增大至0.21、圆曲线极限最小半径由250增至265 m,增大了6%;二者均可保证车辆不发生大幅度侧滑,并能提升车辆行驶的稳定性和安全性,可为山区高速公路设计规划和交通运营管理提供参考。  相似文献   

13.
为了分析沉降变形后路面结构对车辆行驶振动特性的影响作用,采用两自由度1/4车辆模型及随机激励与离散型激励相结合的路面模型建立车辆路面耦合系统,以车身垂向振动加速度为指标,分析了路面变形模式、车辆参数、车辆行驶速度、行驶方向等因素对车辆行驶振动响应量的影响规律。研究结果表明:绝对沉降量相同时,不同路面变形模式下车辆垂向振动加速度相差为32.2%~84.6%,车身垂向振动加速度对大于80km/h的车速变化较为敏感,路面破坏变形模式与车辆行驶速度是影响车辆振动特性的主要因素,制定基于车辆振动特性的沉降控制标准时,应针对不同沉降变形模式与不同车速分别制定相应的控制标准。  相似文献   

14.
城市道路自由车速与车道宽度关联性分析   总被引:4,自引:0,他引:4  
通过对城市道路路段及交叉口出口道自由车速的特性分析,获得自由车速与车道宽度的关联性.选取杭州市交通设施相似、车道宽度不同的9条道路进行车速调查,并采用视频检测及图像识别技术提取车速数据.经数据分析得出,路段及交叉口出口的自由车速服从正态分布,且特征车速随车道宽度增加有上升趋势;建立车道宽度对车速离散情况影响模型,得出交叉口出口及路段车速离散情况随车道宽度的变化趋势.研究结论说明,合理设置道路车道宽度有利于限制车速和提高道路安全性,还可以为城市交通流建模及城市交通管理提供依据.  相似文献   

15.
因车载式视频图像中摄录设备的位置、内外参数随着时间不断变化,难以保证在视频图像范围内有效选取或设定参照物,通过车载式视频图像,精确计算处于运动状态车辆速度难度较大。通过运用直接线性变换法,观测车载式视频图像中处于运动状态车辆的绝对行驶距离或相对行驶距离,可以实现对目标车辆的行驶速度测算。将直接线性变换法应用到车载式视频图像车速测算中,不仅可以提高车速精度,还可以进一步观测道路上不同车辆之间的方位关系,为道路交通事故取证、成因及再现分析提供依据。  相似文献   

16.
为了对大客车道路行驶过程中的侧翻行为进行动力学分析,基于Matlab/Simulink搭建了驾驶人-大客车-道路仿真模型,利用该模型对某二级公路长3.6km路段进行了驾驶人的行驶仿真,采用方向盘转角、侧向偏移距离、侧向加速度、横摆角速度、质心侧偏角、车辆侧倾角、侧向载荷转移率7种动力学指标来评价大客车行驶安全性。研究结果表明:利用侧向载荷转移率对大客车侧翻趋势进行评价更加合理;相比于单纯的平曲线半径较小路段,在多弯道路段,车辆由于需要连续适应道路线形的变化,更易引起车辆侧向运动的不断累积,从而更容易引发道路交通事故;若弯道路段的前、后均为较长直线路段,驾驶人有足够的空间对车辆进行调整,从而在一定程度上降低了事故发生的概率。  相似文献   

17.
事故调查数据发现红花湾枢纽互通在小半径匝道上发生的事故率显著高于其他位置的事故率,车辆经常撞击曲线外侧波形梁护栏并偶有货车发生侧翻。为研究此处事故的形成原因,使用车辆动力学软件CarSim和TruckSim进行不同仿真工况的试验分析,得到了小半径匝道上车辆侧滑、侧翻的影响因素以及事故的形成机理。研究结果表明:(1)小客车行驶速度对小半径匝道的行驶稳定性、侧向偏移量及驾驶员舒适性有显著影响,当匝道半径值为60~65 m时,为保证弯道上的驾驶安全性与舒适性,车速应不超过50 km/h;(2)为了保证行驶安全性,应在小半径匝道圆曲线之前的长直线段设置减速标线,并保障缓和曲长度;(3)车速越大,路面附着系数越小,车辆的侧滑情况越严重,为减少侧滑风险,应在该立交匝道上增设彩色防滑路面以提高路面附着系数;(4)货车以限速值40 km/h入弯时,轮胎载荷转移率最小,轮胎载荷转移率随道路超高和路面附着系数的增大而减小,随载重量和质心高度的增大而增大。  相似文献   

18.
隧道内超车瞬态气动稳定性影响的数值仿真研究   总被引:1,自引:0,他引:1  
从行车安全方面考虑影响隧道内超车车辆直线行驶性能和操纵稳定性能的因素。从空气动力学角度,以某轿车实车缩比模型为研究对象,采用滑移交界面和动网格技术和STAR-CD软件对隧道内2辆车超车过程的外流场进行瞬态数值模拟。考虑到影响气动力稳定性的因素,选取隧道内2种不同侧向间距(2辆车之间)同种相对车速及同种侧向间距3种不同相对车速4种工况进行对比分析。仿真结果表明:超车过程中被超车的气动力变化更为剧烈,各种工况下的变化趋势都呈类正弦曲线,工况Ⅰ和工况Ⅱ的变化幅度尤为明显,直线行驶性能和操纵稳定性能相对较差;而超车过程对主超车流场影响相对较小,气动力变化不是很明显。  相似文献   

19.
针对由山区高速公路纵坡坡度和坡长组合设置不合理,导致长大纵坡路段交通事故频发的问题,通过分析重型车辆上下坡运行速度特性及受力情况,以陕汽生产的F3000重载汽车为例,通过理论推导构建重型车辆公路纵坡爬坡及下坡车速与坡长理论模型,模拟不同比功率重型车辆上、下坡运行速度与坡长的变化关系,并确定高速公路合理的上下坡临界坡长。研究中假设工况为高速公路坡度1%~6%,上坡车辆最高初速度和最低末速分别为80、50 km/h,下坡最低初速度和最高末速度为0、80 km/h。使用MATLAB模拟计算其坡度与车速的变化规律。研究结果表明:上坡过程中,以80 km/h的初速度为例,稳定车速为45~61 km/h;当坡度一定时,比功率越大的车型速度降低的越快,稳定行驶速度越大,达到稳定行驶车速的平衡坡长越长。下坡过程中,当坡度一定时比功率越大的车型,车速增大越多,稳定行驶速度越大,达到稳定行驶车速的平衡坡长就越短。在坡度为1%~3%时,无须设置爬坡车道;当坡度大于3%时,比功率较低的车型,爬坡性能较差,车速下降较快,需要设置爬坡车道。重型车辆在4%、5%、6%的坡度行驶时,设置避险车道的坡长阈值分别为5.5、4、3 km。研究成果可为山区公路线形的合理设计、道路的安全防护以及爬坡车道与避险车道的设置提供理论依据,从而提高山区高速公路重型车辆的行车安全。  相似文献   

20.
为了研究车桥间气动干扰对桥上车辆行驶的影响,以重庆太洪长江大桥为研究背景,针对厢式货车和小轿车2种车型,对强风作用下车桥的动力响应和车辆的行车安全性进行了分析.首先基于风-车-桥耦合整体分析系统,分别获得考虑与不考虑车桥间气动干扰两种情况下车辆的竖向、俯仰、侧倾加速度响应以及桥梁侧向加速度响应,将获得的加速度响应导入MATLAB所编制的局部事故分析程序中,获得车辆侧滑位移和每个车轮反力比,根据行车事故判定准则,判断车辆是否发生事故;然后通过逐级增加车速和风速,得到了2种车型在不同车速下的临界风速.研究结果表明:考虑车桥间气动干扰对车辆动力响应影响较大,从而对桥上车辆行驶安全性影响显著,不考虑车桥间气动干扰的行车安全性分析结果偏保守,此外,考虑车桥间气动干扰还影响车辆在桥上行驶时发生的事故类型.研究结果为强风气象条件下大跨度桥梁的运营安全和科学管理提供了合理的理论参考和数据支撑.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号