首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
设计了一种具有自动功率控制功能的激光驱动器电路.为了获得良好的性能,该驱动器采用级联差分放大器和源极跟随器分别进行信号放大和级间阻抗匹配.该电路的实现采用了0.35 μm标准CMOS工艺.对该电路进行了测试,测试结果表明,在2.5和5 Gbit/s速率下,电路输出信号眼图清晰.在5 V电源电压、2.5 Gbit/s数据速率下,该驱动器可提供0~68 mA范围内的调制电流,满足长距离光纤通信系统的要求.电路典型功耗480 mW,芯片面积为0.57 mm2.  相似文献   

2.
针对IEEE 802.3av标准所定义的对等速率万兆以太无源光网络(10G-EPON)ONU相关应用,设计了一种10 Gbit/s突发模式激光驱动器芯片,并对调制电路和偏置电路的设计进行了改进,以实现较短的突发开启/关断转换时间.本设计采用低成本的0.18μm CMOS工艺进行流片,整个芯片面积为575μm×675μm.测试表明:该芯片可工作在10.312 5 Gbit/s的速率上;当电源电压为1.8 V时,可对50Ω负载提供高达36 mA的调制电流.突发开启/关断转换时间均小于0.2 ns,远低于IEEE 802.3av标准所规定的上限.该突发模式激光驱动器的输出满足10G-EPON时序参数的规定,适用于10G-EPON ONU相关应用.  相似文献   

3.
研究了万兆以太网接收芯片结构,并在此基础上设计、流片和测试了高速1∶4分接芯片,采用0.18 μm CMOS工艺设计的1∶4分接电路,实现了满足10GBASE-R的10.312 5 Gbit/s数据的1∶4串/并转换,芯片面积1 100 μm×800 μm,在输入单端摆幅为800 Mv,输出负载50 Ω条件下,输出2.578 Gbit/s数据信号电压峰峰值为228 Mv,抖动为 4 ps RMS, 眼图的占空比为55.9%,上升沿时间为58 ps.在电源为 1.8 V时, 功耗为 500 Mw.电路最高可实现13.5 Gbit/s的4路分接.  相似文献   

4.
采用CSM 0.35 μm CMOS 工艺,设计了低功耗2.5~3.125 Gbit/s 4∶1复接器.该芯片既可以应用于光纤通信系统SDH STM-16(2.5 Gbit/s)速率级别的光发射机,又可以应用于万兆以太网IEEE 802.3ae 10GBASE-X(3.125 Gbit/s)速率级别的通道接口发送器.系统采用树型结构,核心电路由锁存器、选择器、分频器组成,并采用了CMOS逻辑实现.最高工作速率可达3.5 Gbit/s.芯片供电电压3.3 V,核心功耗为25 mW.该芯片采用SOP-16封装.芯片封装后焊接在高速PCB板上进行测试,封装后芯片最高工作速率为2.3 Gbit/s.  相似文献   

5.
研究了万兆以太网接收芯片结构 ,并在此基础上设计、流片和测试了高速 1∶4分接芯片 ,采用 0 .1 8μmCMOS工艺设计的1∶4分接电路 ,实现了满足 1 0GBASE R的 1 0 .31 2 5Gbit/s数据的 1∶4串 /并转换 ,芯片面积 1 1 0 0 μm× 80 0 μm ,在输入单端摆幅为 80 0mV ,输出负载 5 0Ω条件下 ,输出2 .5 78Gbit/s数据信号电压峰峰值为 2 2 8mV ,抖动为 4psRMS ,眼图的占空比为 5 5 .9% ,上升沿时间为 5 8ps .在电源为 1 .8V时 ,功耗为 5 0 0mW .电路最高可实现 1 3.5Gbit/s的 4路分接  相似文献   

6.
为了实现光纤通信系统中高速分接器低功耗的需求,采用0.18μm CMOS工艺实现了一个全CMOS逻辑10 Gbit/s 1∶4分接器.整个系统采用半速率树型结构,由1∶2分接单元、2分频器单元以及缓冲构成,其中锁存器单元均采用动态CMOS逻辑电路,缓冲由传输门和反相器实现.在高速电路设计中采用CMOS逻辑电路,不但可以减小功耗和芯片面积,其输出的轨到轨电平还能够提供大的噪声裕度,并在系统集成时实现与后续电路的无缝对接.测试结果表明,在1.8 V工作电压下,芯片在输入数据速率为10 Gbit/s时工作性能良好,芯片面积为0.475 mm×0.475 mm,核心功耗仅为25 mW.  相似文献   

7.
基于0.18μm RF CMOS工艺设计一种应用于无源光网络光接收机的无电感型2.5 Gbit/s前置放大器。该前置放大器主要包括跨阻放大器、单端转差分运算放大器和输出级电路。跨阻放大器基于3级推挽反相器结构,具有高增益和低噪声的特点,提高前置放大器的灵敏度;分析零点补偿原理,设计位于反馈环路之中的虚零点,提高跨阻放大器的工作速率,增加稳定性。提出一种新的具有自适应功能的自动增益控制技术,使得跨阻放大器在不同光输入功率下保持带宽不变,环路稳定,具有宽动态范围特性。研究结果表明:在误码率为10-10,传输速率为2.5 Gbit/s时,该前置放大器的接收光灵敏度高达-29 d B·m,输入最大光功率为2 d B·m,动态范围达31 d B·m;在1.8 V的电源电压下,芯片功耗为30 m W,芯片总面积为1×0.7 mm2。  相似文献   

8.
随着CMOS 图像传感器(CIS)在空间分辨率和时间分辨率的不断提升,CIS 的数据量在不断增加;同时,现代社会对低功耗CIS 的需求也越来越多. 设计了应用于CIS 的高速低功耗低压差分信号(LVDS)驱动电路.采用输出摆率控制的电流开关驱动器,该结构不需要在电流开关驱动器的输出端外接匹配电阻实现阻抗匹配,从而减小了电路的功耗;同时利用电流开关驱动器的电流源来实现预加重功能,没有额外的电流源和控制电流源的辅助电路,因此减小了LVDS 驱动电路的整体功耗. 论文采用0.13 μm CMOS 工艺绘制LVDS 驱动电路的版图,面积为0.025 mm2. 在不同工艺角、电源电压和温度下后仿结果为:LVDS 驱动电路在速率为2 Gbit/s 时的最高功耗为23.43 mW,此时在100 Ω 的终端电阻上的摆幅为439 mV,输出共模电平为1.26 V,抖动为15.0 ps.  相似文献   

9.
针对IEEE 802.3av标准所定义的对等速率万兆以太无源光网络(10G-EPON)ONU相关应用,设计了一种10 Gbit/s突发模式激光驱动器芯片,并对调制电路和偏置电路的设计进行了改进,以实现较短的突发开启/关断转换时间.本设计采用低成本的0.18μm CMOS工艺进行流片,整个芯片面积为575 μm×675μ...  相似文献   

10.
设计并实现了基于0.2 μm PHEMT工艺的宽带电流模形式前置放大器.前置放大器将光电二极管产生的电流信号放大并转换为差分电压信号.电路为共栅结构,输入电阻小,减小了光检测器寄生电容对电路带宽的影响.设计时采用了电容峰化技术,可获得比普通共栅结构更宽的带宽.后仿真结果为,在单电源5 V,输出负载50 Ω的条件下,该前置放大器的跨阻增益为1.73kΩ,带宽可达到10.6 GHz,同时具有低噪声和较宽的线性范围,芯片面积为607 μm×476 μm.测试结果表明,此前置放大器可以很好地工作在10 Gbit/s速率上.  相似文献   

11.
基于0.35μm CSMC(central semiconductor manufacturing corporation)工艺设计,并流片了一款典型的带隙基准电压源芯片,可输出不随温度变化的高精度基准电压。电路包括核心电路、运算放大器和启动电路。芯片在3.3V供电电压,-40~80℃的温度范围内进行测试,结果显示输出电压波动范围为1.212 8~1.217 5V,温度系数为3.22×10-5/℃。电路的版图面积为135μm×236μm,芯片大小为1mm×1mm。  相似文献   

12.
设计了一种采用阶段控制技术实现的软启动电路,该电路消除了软启动过程中出现的浪涌电流,同时避免了传统软启动电路在软启动结束时出现的过冲现象.该电路可以完全集成在DC/DC开关电源管理芯片中,避免额外电容而占用过多面积和增加功耗.通过Hspice电路仿真,对于输入电压为5 V,输出电压为2.5 V的Buck型开关电源系统,利用该软启动电路,输出电压近似以1.9 mV/μs速度平稳上升,同时电感电流在第一阶段控制在5 A以内,第二阶段近似以3.75 mA/μs平稳上升,符合设计指标.  相似文献   

13.
提出一种采用叠层电感(Stacked Inductor)的25Gb/s 30dB的限幅放大器(Limiting Amplifier,LA),相对于传统限幅放大器,该放大器面积更小.改进的Cherry-Hooper放大器能够解决增益和电压余度(Voltage Headroom)之间的折中问题,因此具有3级级联的该放大器组成了本电路的核心增益级.直流失调消除电路由低通滤波器和放大器组成,同时利用密勒效应实现电容倍增从而节约电容面积.为了在印刷电路板上单独测试LA,将连续时间均衡器以及具有前馈均衡的输出驱动器都集成在本芯片上.该设计采用TSMC 65nm工艺进行流片验证,测试结果表明3dB带宽达到17.5GHz,增益为29.0dB;在电源电压为1.1V的情况下,核心增益级功耗为25.3mW,占用0.072mm2面积.  相似文献   

14.
设计了一个用于非相干脉冲超宽带接收机的0.18-μm CMOS工艺的能量检波器.该检波器包含了输入匹配模块、平方电路、翻转电压跟随器-电流检测电路、跨导级以及输出缓冲器.平方电路运用饱和区晶体管的平方律特性对输入差分信号进行平方,所得到的输出电流由翻转电压跟随器-电流检测电路转换成电压.跨导级对该信号进行放大并积分得到所接受的能量.测试结果可以看出,当输入信号的峰峰值超过60mV时,在高达300 MHz的频率下检波增益可以达到10 dB.而最小检测幅度为13 mV,此时的检波增益为5 dB.在移除输出缓冲器之后,输出脉冲的幅度将增加一倍.不计及测试焊盘,芯片面积为0.23 mm×0.3 mm.电路由一个1.8 V的电源供电,核心电路电流为3.5 mA.该检波器已成功应用于开关键控方式的接收机以实现高速宽带通信.  相似文献   

15.
针对环境中的低频振动能量,基于低频悬臂梁压电结构,建立了压电俘能器的准静态振动模型,并通过数值仿真与试验对其进行了验证.结果显示,数学模型与数值仿真及试验结果相吻合.当该结构在一阶谐振(58.9 Hz)状态,且激励加速度10 m/s2时,结构开路输出电压可达86.3 V,最大输出功率为27.5 mW.另外,针对压电俘能器的能量存储问题,采用LTC3588-1芯片,设计了相应的能量采集电路,并进行了超级电容充电试验.结果显示,对0.22F 5 V超级电容充电6 000 s可达到3.6 V电压.   相似文献   

16.
为解决高性能CPU、GPU、AI等高端芯片的片上互联(D2D)带宽低、引脚效率不高的问题,设计了一款面向超短距离传输(USR)的低功耗、高引脚效率的125 Gb/s发射机。为提高引脚效率,该电路采用相关非归零编码(CNRZ)技术;为降低发射机功耗,采用一种预编码的电压模驱动(SST)技术;为解决传统电路两级2∶1 MUX功耗大的问题,采用CMOS的4∶1 MUX。该发射机采用CMOS 28 nm工艺设计,0.9 V电压供电。仿真结果表明,基于CNRZ技术的发射机工作在125 Gb/s时,输出信号最小眼宽可达0.41 UI(1 UI=40 ps),系统功耗为1.1 pJ/bit,引脚效率由5 bit/10 wire提高到5 bit/6 wire。  相似文献   

17.
设计了一个10 bit,100 Ms/s视频模拟前端IP核,并用台积电(TSMC)0.18μm 1.8/3.3 V互补金属氧化物半导体(CMOS)纯数字工艺进行了仿真.电路中模拟部分采用3.3 V电源电压,仿真结果显示当输入信号为18 MHz,信号幅度为满幅(单端1 V,差分2 V)时,输出信号信号-噪声-失真比(SNDR)为60 dB.整个电路的功耗为73 mA,版图面积为2 mm×2.5 mm.  相似文献   

18.
文章设计了一种应用于D/A转换器芯片中的带隙基准电压电路,在3 V工作电压下具有极低的温度系数,输出电压低于传统带隙基准电路.该电路改进了传统带隙基准电路,减小了运放失调和电路误差,通过电阻二次分压降低了基准输出电压.在SMIC 0.35 μm CMOS工艺下,使用Hspice进行了仿真.仿真结果表明:该基准的温度系数在-40~100 ℃的范围内仅为3.6×10-6 /℃;电源电压在2.7~3.3 V之间变化时,电源抑制比为52 dB.该文设计的带隙基准电压源完全符合设计要求,是一个性能良好的基准电路.  相似文献   

19.
InAlAs/InGaAs HEMT跨阻前置放大器的设计与实现   总被引:1,自引:1,他引:1  
提出了基于耗尽型InAlAs/InGaAsHEMT器件的光纤通信接收机中的单电源跨阻前置放大器电路,并给出了设计方法与实验结果,该前置放大器采用单电源供电,单端输入,双端差动输出,由两级源级跟随器,一级输出级以及一个反馈电阻组成。当前置放大器工作在2.5Gbit/s时,跨阻可达62.5dBΩ,采用+5V电源供电,功耗为272mW。  相似文献   

20.
可调谐半导体激光吸收光谱技术气体痕量检测系统中,激光器驱动电路存在模块体积大、电流纹波大、温度漂移严重、响应速度慢等问题,容易导致激光器波长偏离谱线吸收峰,影响系统测量精度。为解决上述问题,首先设计集高精度恒流源、实时监测电路、电阻-电压变换电路、温度采集电路、MAX1978制冷器控制芯片、数字PID整定算法等于一体的激光驱动器;然后,实验测试激光驱动器对DFB激光器(1 627 nm)电流调谐与温度控制的性能,分析确定DFB激光器波长的电流调谐系数、温度调谐系数以及内部温度误差来源;最后,通过改进B值计算及校正方法,对激光驱动器温度控制误差进行补偿,实现DFB激光器输出波长的精准锁定。实验表明:改善后的激光驱动器较传统激光驱动器的驱动电流绝对误差降低54.5%(±0.005 mA);控制温度绝对误差降低71.4%(±0.01℃);响应时间提高2.98倍(0.067 s/℃);C_2H_4气体检测系统精度提高17%。研究结果为TDLAS气体检测方法的应用提供了可靠的技术支撑。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号