首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 78 毫秒
1.
设R为环,MR是拟AGP-内射模,S=End(MR),文章主要研究了S的Jacobson根和半单性.在MR是自生成元时,证明了:1)J(S)=△,其中△={s∈S|kers是M的本质子模};2)若S是满足特殊升链条件的半素环,则S是半单环.从而推广了AGP-内射环的一些结果.  相似文献   

2.
设R为环,MR是拟AP-内射模,S=End(MR), N(S)表示S的幂零元之集。研究了满足升链条件的环S的强正则性和半单性以及与一些特殊环的关系。  相似文献   

3.
把拟AP-内射模的已有性质与拟P-内射模的研究方法 相结合, 给出了拟AP-内射模的一些新性质. 设MR是拟AP-内射的右R-模, 令S=End(MR), 则: (1) S是右弱C2环; (2) 又若对任意非空集合XM,Ls(X)由幂等元生成, 且S是局部的左duo环, 则Ss是连续环.  相似文献   

4.
拟YJ-内射模是YJ-内射模的一种重要的推广形式.本文给出了拟YJ-内射模的自同态环特征,所得结论推广了文献[6]中的一个重要结果.  相似文献   

5.
关于广义内射模的一些研究   总被引:1,自引:1,他引:1  
论文给出了拟AP-内射模的一些结果.同时,定义了拟AGP-内射模,并且得到了若干结果.如设MR是拟AGP-内射模,并且对任意a∈S,都存在正整数n,使得an(M)是投射的,那么S是π-正则环.并且,因此得到S是左(右)GPP-环.这些推广总结了拟AP-内射模和AGP-内射环的一些结果.  相似文献   

6.
拟内射半模与伪内射半模   总被引:1,自引:1,他引:0  
利用半模理论对半模的拟内射性和伪内射性进行了研究,得出了拟内射半模和Hom函子的关系;同时在半模中引入拟内射盖,并且获得了一些性质.  相似文献   

7.
定义了拟WGP-内射模,给出了拟WGP-内射模的一些刻画及性质。设R为环,M是右R-模,S=End(M),证明了MR是一个右拟WGP-内射模当且仅当对于任意的0≠a∈S,存在0≠c∈S,使得ac≠0且lS(ker(ac))=Sac;设M是右拟WGP-内射的自生成子,S半素,则S的每个极大核是M的直和项;设MR是右拟WGP-内射模,对于S的任意右一致元u,Au={s∈S|kers∩u(M)≠0}是包含ls(u(M))的一个极大左理想,从而推广了WGP-内射环的一些结果。  相似文献   

8.
研究了IP-内射环的扩张,证明了:(1)若R是右IP-内射环,且满足ReR=R,其中e=e^2∈R,则eRe是右IP-内射环;(2)给出了,n阶矩阵环Mn(R)是右IP-内射环的两个等价刻画。同时,还将右IP-内射环推广到右IP-拟内射模,并证明了右IP-拟内射模一定是右F-拟内射模。  相似文献   

9.
10.
对拟内射模的性质做了一些补充,并且对拟内射预盖及拟内射盖作了一些探讨.  相似文献   

11.
设M是有限生成的拟投射左R-模,那么End(RM)为半完全环的充要条件是M能分解成模直和:M=M1…Mr,其中每个End(RMi)为局部环;设R为整环,那么,对于任意有限生成的拟投射但非投射的R-模M,End(RM)为半完全环的充要条件是R的Krull维数为1和R的每个理想都有准素分解;设R为Dedekind整环,M是有限生成的扭R-模,那么End(RM)为半完全环。  相似文献   

12.
考虑n阶矩阵环Mn(R)的子环Sn(R)的拟Armendariz性质, 证明了如果R是半素环, α12,…,αn是R的相容自同态, 则对任意正整数n≥2, Sn(R)是拟Armendariz环; 并证明了如果R是交换环, α12,…,αn是R的相容自同态且α1n, 则R是半素环当且仅当Sn(R)是拟Armendariz环.  相似文献   

13.
极小内射模、极小平坦模与某些环   总被引:1,自引:0,他引:1  
称一个右R-模M是极小平坦的,如果对任一极小左理想I,自然同态M⊙RI→M⊙RIR是单的.环R称为左极小遗传的,如果R的每个极小左理想都是投射的.环R称为左极小正则的,如果R的每个极小左理想都是RR的直和项.环R称为左极小凝聚的,如果R的每个极小左理想是有限表现的.给出了极小内射模和极小平坦模的一些刻划,并用极小内射模和极小平坦模刻划了极小遗传环、极小正则环和极小凝聚环.  相似文献   

14.
15.
研究了伪内射模的性质,用伪内射模刻画了半单环,Noether、V-环,半Artin环和半局部环,得到的主要结果为:(1)伪内射模的完全不变子模是伪内射模;(2)尺是半单环当且仅当伪内射模与半单模一致当且仅当半本原模是伪内射模,且本质基座的模是伪内射模当且仅当基座为0的模是伪内射模,伪内射模的直和伪内射;(3)尺半Artin环当且仅当基座为0的模伪内射;(4)尺是半局部环当且仅当尺为左良好环且半本原模是伪内射模.  相似文献   

16.
利用Morita系统环上的(右)模的分解,研究其上的自由模,并利用所得的结果刻画形式三角矩阵环上的自由莫模与投射模,对于Morita系统环T](RNMS)(θφ),每个T-模可以分解为一个四元素对(P,Q)(f,g),记P^-R=P/Imf,Q^-s=Q/Tmg,R^-=R/Tmθ,S^-=S/1mψ,且设Λ为任意非空集合,主要结果有:1)若(P,Q)(f,g)≌T^(Λ),则P^-R^-≌R^-(Λ),Q^-S^-≌S^-(Λ).2)若1p与Rθ的张量积=0且1Q与Sψ的张量积=0,则{(pλ,qλ)|λ∈λ}是(P,Q)(f,g)的一组自由基当且仅当下列条件①和②成立:①{p^-λ|λ∈Λ}和{q^-λ|λ∈Λ}分别为P^-R^-和Q^-S^-的自由基,且{pλ|λ∈Λ}是R-线性无关的,{qλ|∈Λ}是S-线性无关的;②f(∑(qλ与nλ的张量积))=0蕴涵nλ=0,且g(∑λ(pλ与mλ的张量只))=0蕴涵mλ=0(对于任意的nλ∈N,mλ∈,λ∈Λ).3)当M=0时,(P,Q)(f,g)≌T(Λ)当且仅当P^-R^-≌R^(Λ),Q^-s^-≌S^-(Λ)且f为单同态。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号