首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A Bast  M H Steeghs 《Experientia》1986,42(5):555-556
NADPH dependent H2O2 formation in microsomes in the presence of chelated iron leads to formation of hydroxyl radicals. Enhancement of hydroxyl radical generation (via ferric-EDTA or sodium azide) did not result in a concomitant increase in lipid peroxidation; rather, a decrease was observed. Moreover, the hydroxyl radical scavenger DMSO did not inhibit lipid peroxidation. This comparison of hydroxyl radical formation with lipid peroxidation suggests that hydroxyl radicals do not play a part in NADPH-dependent lipid peroxidation.  相似文献   

2.
Summary Immunomodulating lipopeptides lauroyl-L-Ala--D-Glu-LL-A2pmNH2-Gly (RP 44.102) and lauroyl-L-Ala--D-Glu-LL-A2pmNH2 (RP 56.142) were found to protect mice against the hepatotoxicity of paracetamol, which is due to cytochrome P-450 dependent formation of toxic metabolites and radicals. In fact they decreased the amount of hepatic microsomal cytochrome P-450, and the level of CCl4-induced lipid peroxidation. In contrast lauroyl-L-Ala--D-Glu-DD-A2pmNH2 (RP 53.204), which only differs by the configuration of the two chiral carbons of A2pm (diaminopimelic acid) and is not an immunomodulating agent, failed to protect against poisoning by paracetamol and had no effect on the level of hepatic cytochrome P-450 or the microsomal CCl4-induced lipid peroxidation. This provides a clear connection between the immunostimulating properties of a compound and its effects on xenobiotic biotransformations.  相似文献   

3.
Melatonin protects the electron transport chain (ETC) in multiple ways. It reduces levels of ·NO by downregulating inducible and inhibiting neuronal nitric oxide synthases (iNOS, nNOS), thereby preventing excessive levels of peroxynitrite. Both ·NO and peroxynitrite-derived free radicals, such as ·NO2, hydroxyl (·OH) and carbonate radicals (CO3·?) cause blockades or bottlenecks in the ETC, by ·NO binding to irons, protein nitrosation, nitration and oxidation, changes that lead to electron overflow or even backflow and, thus, increased formation of superoxide anions (O2·?). Melatonin improves the intramitochondrial antioxidative defense by enhancing reduced glutathione levels and inducing glutathione peroxidase and Mn-superoxide dismutase (Mn-SOD) in the matrix and Cu,Zn-SOD in the intermembrane space. An additional action concerns the inhibition of cardiolipin peroxidation. This oxidative change in the membrane does not only initiate apoptosis or mitophagy, as usually considered, but also seems to occur at low rate, e.g., in aging, and impairs the structural integrity of Complexes III and IV. Moreover, elevated levels of melatonin inhibit the opening of the mitochondrial permeability transition pore and shorten its duration. Additionally, high-affinity binding sites in mitochondria have been described. The assumption of direct binding to the amphipathic ramp of Complex I would require further substantiation. The mitochondrial presence of the melatonin receptor MT1 offers the possibility that melatonin acts via an inhibitory G protein, soluble adenylyl cyclase, decreased cAMP and lowered protein kinase A activity, a signaling pathway shown to reduce Complex I activity in the case of a mitochondrial cannabinoid receptor.  相似文献   

4.
The fluorescent dye Merocyanine 540 (MC540) is often used as a probe to monitor the molecular packing of phospholipids in the outer leaflet of biomembranes. In a previous study we showed that the increased staining of erythrocytes with a perturbed membrane structure was mainly due to an increase in the fluorescence yield of cell-bound MC540, rather than to an increase of the number of bound molecules. Erythrocytes and ghosts exposed to continuous fluxes of H2O2 exhibited pronounced lipid peroxidation. Further, red blood cells subjected to this form of oxidative stress also showed increased staining with MC540. It appeared that this was caused by a strong increase in binding of MC540, together with a slight red shift of the fluorescence emission maximum and a small increase in the fluorescence yield of bound MC540. The changed MC540 binding characteristics were not observed when lipid peroxidation was suppressed by the presence of the antioxidant BHT in the incubation medium. However, open ghosts exposed to H2O2 showed no increase of MC540 binding, excluding a direct involvement of lipid peroxidation. Measurement of fluorescence emission spectra and gel filtration studies showed that MC540 can bind to H2O2-exposed hemoglobin. Experiments with erythrocytes lysed in hypotonic medium after exposure to H2O2 revealed that peroxidation of lipids with H2O2 induced a non-specific permeabilization of the plasma membrane to MC540, thereby allowing MC540 to bind to the oxidatively denatured, more hydrophobic hemoglobin. These results indicate that conclusions about packing of phospholipids in the outer leaflet of the membrane based on increased MC540-staining should be drawn with care. Received 27 September 1996; received after revision 5 November 1996; accepted 27 November 1996  相似文献   

5.
Immunomodulating lipopeptides lauroyl-L-Ala-gamma-D-Glu-LL-A2pmNH2-Gly (RP 44.102) and lauroyl-L-Ala-gamma-D-Glu-LL-A2pmNH2 (RP 56.142) were found to protect mice against the hepatotoxicity of paracetamol, which is due to cytochrome P-450 dependent formation of toxic metabolites and radicals. In fact they decreased the amount of hepatic microsomal cytochrome P-450, and the level of CCl4-induced lipid peroxidation. In contrast lauroyl-L-Ala-gamma-D-Glu-DD-A2pmNH2 (RP 53.204), which only differs by the configuration of the two chiral carbons of A2pm (diaminopimelic acid) and is not an immunomodulating agent, failed to protect against poisoning by paracetamol and had no effect on the level of hepatic cytochrome P-450 or the microsomal CCl4-induced lipid peroxidation. This provides a clear connection between the immunostimulating properties of a compound and its effects on xenobiotic biotransformations.  相似文献   

6.
Comparison of Ca2+ uptake by Ehrlich carcinoma cells in presence of ferric lactate or aluminum lactate, and formation of thiobarbituric acid-reactive substances, suggests that lipid peroxidation is associated with but not the cause of calcium overload that can lead to cell injury and death.  相似文献   

7.
The polyunsaturated fatty acids (PUFAs), linoleic acid (LA), alpha linolenic acid (ALA), gamma linolenic acid (GLA), arachidonic acid (AA), docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), showed inhibition of growth of both normal and abnormal (Molt-4) human lymphocytes, and inhibition was concentration-dependent. Interestingly, the production of the lymphokine Interleukin-2 (IL-2) was elevated in Molt-4 cells, but it was reduced in the normal human lymphocytes. Addition of GLA or IL-2 or a combination of both showed enhancement of SO 2 and of lipid peroxidation levels, which were significantly higher in Molt-4 cells than in the normal lymphocytes. Reduction of protein concentration was also observed in both types of cells during this treatment. The data showed that the antiproliferative effects of GLA and IL-2 may partly be exerted through the elevated production of superoxide free radicals and peroxidatin products. This is a novel finding and therefore, further exploitation of combinations of PUFAs and IL-2 may be a possible way of combating cancer cell growth.  相似文献   

8.
Summary We have observed a differential effect of silybin dihemisuccinate on rat liver microsonal oxygen consumption and on lipid peroxidation induced by NADPH-Fe2+-ADP and t-butyl hydroperoxide. These results are ascribed to the antioxidant properties of the flavonoid. The differences observed in the effect of the catalysts may be a consequence of the different capacity of silybin to act as a scavenger of free radicals formed by NADPH-Fe2+-ADP or t-butyl hydroperoxide.This research was supported in part by grant B-2019-8412 from Dirección de Investigación y Bibliotecas, Universidad de Chile.  相似文献   

9.
Tolerance against oxidative stress generated by high light intensities or the catalase inhibitor aminotriazole (AT) was induced in intact tobacco plants by spraying them with hydrogen peroxide (H2O2). Stress tolerance was concomitant with an enhanced antioxidant status as reflected by higher activity and/or protein levels of catalase, ascorbate peroxidase, guaiacol peroxidases, and glutathione peroxidase, as well as an increased glutathione pool. The induced stress tolerance was dependent on the dose of H2O2 applied. Moderate doses of H2O2 enhanced the antioxidant status and induced stress tolerance, while higher concentrations caused oxidative stress and symptoms resembling a hypersensitive response. In stress-tolerant plants, induction of catalase was 1.5-fold, that of ascorbate peroxidase and glutathione peroxidase was 2-fold, and that of guaiacol peroxidases was approximately 3-fold. Stress resistance was monitored by measuring levels of malondialdehyde, an indicator of lipid peroxidation. The levels of malondialdehyde in all H2O2-treated plants exposed to subsequent high light or AT stress were similar to those of unstressed plants, whereas lipid peroxidation in H2O2-untreated plants stressed with either high light or AT was 1.5- or 2-fold higher, respectively. Although all stress factors caused increases in the levels of reduced glutathione, its levels were much higher in all H2O2-pretreated plants. Moreover, significant accumulation of oxidized glutathione was observed only in plants that were not pretreated with H2O2. Extending the AT stress period from 1 to 7 days resulted in death of tobacco plants that were not pretreated with H2O2, while all H2O2-pretreated plants remained little affected by the prolonged treatment. Thus, activation of the plant antioxidant system by H2O2 plays an important role in the induced tolerance against oxidative stress. Received 11 December 2001; received after revision 25 January 2002; accepted 4 February 2002  相似文献   

10.
Summary Silymarine-N-methylglucamine-salt has a pronounced high antioxidative function against microsomal lipid peroxidation, associated with liver injury by CCl4.  相似文献   

11.
A number of enzymes use an amino acid free radical cofactor. Tyrosyl and tryptophanyl radicals react with nitric oxide (NO) with an almost diffusion-limited rate. The catalytically competent tyrosyl radical in ribonucleotide reductase (RR) and prostaglandin H synthase (PGHS) recombines with NO in a radical-radical reaction. The unstable adduct formed can dissociate to regenerate the tyrosyl radical. However, upon prolonged incubation with NO, the diiron center of mouse RR leaks out, while the adduct is sucessively oxidized into an iminoxyl radical and a nitrotyrosine in PGHS. These data provide a plausible mechanism for the physiological inactivation of RR observed in various models, and may help in understanding the inhibition of PGHS reported in some cases. Reversible combination with NO is an intrinsic property of tyrosyl radicals, which also occurs with YD and YZ in photosystem II, where NO has been useful in the analysis of the oxygen-evolving complex.  相似文献   

12.
The level of malondialdehyde (MDA), an index of lipid peroxidation, and the antioxidants superoxide dismutase (SOD) and glutathione (GSH), as well as the activity of Na+, K+-ATPase, were assessed in whole rat brain after immobilization, anemic hypoxia (NaNO2) and 72 h starvation. The effect of these stressors on plasma glucose and corticosterone levels was also observed. Hypoxia and starvation stimulated the lipidj peroxide formation in braini as indicated by an increase in the level of MDA, being higher after starvation than hypoxia. Brain SOD activity was also increased in response to hypoxia and starvation while GSH content was only diminished ini hypoxia. However, neither MDA nor antioxidants were affected by immobilization. On the other hand, the activity of brain Na+, K+-ATPase was significantly increased by immobilization and hypoxia but decreased in starvation. A similar pattern of change was also observed in plasma glucose and corticosterone levels in response to these stressors. These results elucidate differences in the biochemical response of animals towards various types of stress, with increased lipid peroxide formation in hypoxia and starvation.  相似文献   

13.
Summary N-acyl dehydroalanines react with and scavenge mainly superoxide radical and hydroxyl radical (HO.). The ortho-methoxyphenylacetyl dehydroalanine derivative, indexed as AD-20, protects mice against damage resulting from total body X-irradiation, as measured by the increase in their survival time. AD-20 increases the LD50 at 30 days from 6.1 to 7.3 Gy in animals exposed to a wide range of X-rays (6 to 10 Gy). The dose reduction factor (D R F) of AD-20 is 1.20. We postulate that such radioprotective effect may result from its free radical scavenging activity.  相似文献   

14.
Summary The main cellular defence systems against free radical-mediated oxidative stress are significantly reduced in the dige+ive gland of aged (>10 years old) compared to younger (2–4 years old) mussels (Mytilus edulis L.). Moreover, the concentration of lipid peroxidation products (malondialdehyde) is increased in the same age group with respect to younger animals. The obtained data indicate that an impairment of the antioxidant defence systems would render the older animals more susceptible to peroxidative stress, thus supporting the general significance of the free radical theory of aging.  相似文献   

15.
Summary Superoxide dismutase, catalase and methional proved capable of inhibiting the microsomal oxidation of thiobenzamide, which is most probably catalyzed by the flavin-containing monooxygenase. This indicates that excited oxygen species (e. g.·O 2 , H2O2, ·OH) are involved in the catalytic cycle of this enzymatic reaction. CO, which inhibits the cytochrome P-450-dependent oxygen radical formation, had no effect on the oxidation reaction, suggesting that the source of the reactive oxygen species is not the microsomal mixed-function oxidase.  相似文献   

16.
Selective hydroxylation of aromatic compounds is among the most challenging chemical reactions in synthetic chemistry and has gained steadily increasing attention during recent years, particularly because of the use of hydroxylated aromatics as precursors for pharmaceuticals. Biocatalytic oxygen transfer by isolated enzymes or whole microbial cells is an elegant and efficient way to achieve selective hydroxylation. This review gives an overview of the different enzymes and mechanisms used to introduce oxygen atoms into aromatic molecules using either dioxygen (O2) or hydrogen peroxide (H2O2) as oxygen donors or indirect pathways via free radical intermediates. In this context, the article deals with Rieske-type and α-keto acid-dependent dioxygenases, as well as different non-heme monooxygenases (di-iron, pterin, and flavin enzymes), tyrosinase, laccase, and hydroxyl radical generating systems. The main emphasis is on the heme-containing enzymes, cytochrome P450 monooxygenases and peroxidases, including novel extracellular heme-thiolate haloperoxidases (peroxygenases), which are functional hybrids of both types of heme-biocatalysts. Received 11 August, 2006; received after revision 28 September 2006; accepted 9 November 2006  相似文献   

17.
The mechanisms of iron-mediated inhibition of the H(+)-ATPase activity of plasma membrane (PM) vesicles isolated from wheat roots were investigated. Both FeSO(4) and FeCl(3) significantly inhibited PM H(+)-ATPase activity, and the inhibition could be reversed by the addition of the metal ion chelator EDTA-Na(2) or a specific Fe(2+) chelator, indicating that the inhibitory effect was due to specific action of Fe(2+) or Fe(3+). Measurement of the extent of lipid peroxidation showed that oxidative damage on the PM caused by Fe(2+) or Fe(3+) seemed to be correlated with the inhibition of PM H(+)-ATPase activity. However, prevention of lipid peroxidation with butylated hydroxytoluene did not affect iron-mediated inhibition in the PM H(+)-ATPase, suggesting that the inhibition of the PM H(+)-ATPase was not a consequence of lipid peroxidation caused by iron. Investigation of the effects of various reactive oxygen species scavengers on the iron-mediated inhibition of H(+)-ATPase activity indicated that hydroxyl radicals (*OH) and hydrogen peroxide (H(2)O(2)) might be involved in the Fe(2+)-mediated decrease in PM H(+)-ATPase activity. Moreover, iron caused a decrease in plasma protein thiol (P-SH), and Fe(3+) brought a higher degree of oxidation in thiol groups than Fe(2+) at the same concentration. Modification of the thiol redox state in the PM suggested that reducing thiol groups were essential to maintain PM H(+)-ATPase activity. Incubation of the specific thiol modification reagent 5,5-dithio-bis(2-nitrobenzoic acid) with the rightside-out and inside-out PM revealed that thiol oxidation occurred at the apoplast side of the PM. Western blotting analysis revealed a decrease in H(+)-ATPase content caused by iron. Taken together, these results suggested that thiol oxidation might account for the inhibition of PM H(+)-ATPase caused by iron, and that *OH and H(2)O(2) were also involved in Fe(2+)-mediated inhibition.  相似文献   

18.
Summary Superoxide dismutase, catalase and sodium formate did not inhibit the formation of malondialdehyde (MDA) from arachidonic acid, suggesting that O 2 , H2O2 and OH. are not involved in the enzymatical oxidation of arachidonic acid. Sodium azide was found to be an inhibitor of MDA production.  相似文献   

19.
A new experimental approach for spin-trapping of oxygen radicals in a selected region of the heart in situ is described. This approach is based on microdialysis, and it permits the detection of oxygen radicals in conditions of local ischemia and restoration of normal blood flow. Increased hydroxyl radical generation in an ischemic area of canine myocardium, as a result of 40 min local occlusion, has been studied.  相似文献   

20.
Summary Chronic ethanol administration was shown to increase catalase and acyl-CoA oxidase activities in rat myocardium but did not alter the activity of liver peroxisomal enzymes. As a result of alcohol consumption a 2–3-fold increase in the level of lipid peroxidation was observed in the heart tissue while in the liver the induction was much less pronounced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号