首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
讨论了一般有序Banach空间E中一类二阶非线性脉冲微分方程两点边值问题{-u″(t)=f(t,u(t)),t∈J,t≠tk,-△u’|t=tk=Ik(u(tk)),k=1,2,…,m,u(0)=u(1)={θ正解的存在性结果,其中,f∈C(J×K,K),Ik∈C(K,K),k=1,2,…,m,K为E中的正元锥.增加脉冲项后所研究方程的解的表达形式也发生了改变,证明了其成立的充分必要性.在非紧性测度的估计过程中利用Green函数的一些性质进行合理的计算和适当的放大,得到了比较好的估计结果.最后应用凝聚映射的不动点指数理论获得了该问题正解的存在性,从而把文献(兰州大学学报:自然科学版,2008,44(6):120-126.)的结果推广到了具有广泛的物理背景和现实数学模型的脉冲微分方程领域.  相似文献   

2.
本文研究的是二阶非齐次脉冲微分系统:{-u·(t)+ρ2u(t)=f(t,u(t)),t∈J,t≠tk(k=1,2,…,p)△u't=tk=-Ik(u(tk),u'(tk)),(k=1,2,…,p)u(0)=u(2π),u'(0)=u'(2π)=0,首先,利用常数变易法得到阶非齐次脉冲微分在连续情形下解的等价积分方程:u(t)=∫2x,0(t,s),(s,u(s))ds,t∈J其次,又利用还原的方法得到了二阶非齐次脉冲微分在一介导数带脉冲情形下解的等价积分方程:u(t)=∫2x,0 G(t,s)f(s,u(s))ds+∑p,k=1 G(t,tk)Ik(u(tk),u'(tk),u'(tk))  相似文献   

3.
考虑Banach空间E中一类非线性分数阶微分方程边值问题{-Dα0+u(t)=f(t,u(t))t∈Iu(0)=u'(0)=u'(1)=θ解的存在性,其中2σ≤3是实数,I=[0,1],Dα0+是标准的Riemann-Liouville导数,f:I×E→E连续,θ为E中的零元.用新的非紧性测度估计技巧,在f满足比较一般的增长条件和非紧性测度条件下,通过凝聚映射的不动点定理获得了该边值问题解的存在性.  相似文献   

4.
讨论了有序Banach空间E中的非线性二阶积-微分方程边值问题—u"(t)=f(t,u(t),(Su)(t)),t∈I,u(0)=u'(1)=θ正解的存在性,用非紧性测度的估计技巧与凝聚映射的不动点指数理论获得了该问题正解的存在性结果.  相似文献   

5.
运用上下解方法和拓扑度理论研究了一阶常微分方程多点边值问题{u'(t)=f(t,u(t)),t∈[0,T],u(0)+Σm k=1a_ku(t_k)=c多个解的存在性,其中c∈R,t_k(k=1,2,3,…,m)满足0t_1t_2…t_mT,a_k0均为给定常数,并且满足1+Σm k=1a_k0,f∈C([0,T]×R,R)。实例说明了结果的正确性。  相似文献   

6.
利用上下解的单调迭代技巧讨论了Banach空间二阶积-微分方程两点边值问题-u″(t)=f(t,u(t),Su(t)),t∈I,u(0)=u(1)=θ解的存在性.其中f∈C(I×E×E,E),I=[0,1].在非线性项f满足一定的非紧性测度条件和单调性条件下,利用相应的线性方程解算子的谱半径,通过非紧性测度的精细计算,获得了其在上下解之间的最小、最大解的存在性以及在上下解之间解的唯一性.  相似文献   

7.
应用单调迭代技巧研究了抽象的Banach空间E中一类非线性分数阶微分方程边值问题{-D——0~α+u(t)=f(t,u(t)),t∈I,u(0)=u′(0)=u′(1)=θ解的存在性,其中2α≤3是实数,I=[0,1],Dα0+是标准的Riemann-Liouville导数,f:I×E→E连续,θ为E中的零元.在较弱的单调性条件和非紧性测度条件下,通过构造上下解的单调迭代过程,获得该边值问题最小、最大解对的存在性及解的存在唯一性.  相似文献   

8.
研究Rn中脉冲依赖状态的半线性发展方程初值问题u′(t)+Au(t)=f(t,u(t))a.e.t∈J=[0,a],t≠τk(u(t)),k=1,2,…,m;u(t+)=Ik(u(t)),t=τk(u(t)),k=1,2,…,m;u(0)=u0解的存在性.其中-A生成Rn的等度连续C0-算子半群的生成元.在f满足较弱的L1-Caratheodory条件下,逐段使用Schaefer不动点定理获得其mild解的存在性结果.  相似文献   

9.
讨论了有序Banach空间E中的边值问题-u″(t)+Mu(t)=f(t,u(t)),0≤t≤1,u'(0)=u'(1)=θ的正解,其中f:[0,1]×P→P连续,P为E中的正元锥.通过新的非紧性测度的估计技巧与凝聚映射的不动点指数理论获得了该问题正解的存在性结果.  相似文献   

10.
讨论有序Banach空间E中分数阶边值问题D_0~α+u(t)=f(t,u(t)), 0 t 1, u(0)=u(1)=u'(0)=u'(1)=θ正解的存在性,其中,3 α≤4,D_0~α+是标准的Riemann-Liouville微分,f:[0,1]×P→P连续,P为E中的正元锥.通过非紧性测度的估计技巧与凝聚映射的不动点指数理论获得该边值问题正解的存在性结果.  相似文献   

11.
研究如下一类Banach空间中一阶脉冲微分方程组的无穷边值问题{u’=f(t,u(t),v(t)),v’=g(t,u(t),v(t)),t∈J,t≠tk,△u|t=tk=Ik(u(tk),v(tk)),△v|t=tk=Jk(u(tk),v(tk)),k=1,2,…u(∞)=βu(0),v(∞)=δv(0).首先利用H.Mnch不动点定理和非紧性测度,获得了该问题解的存在性,然后在解存在的前提下,利用反证法证明了解的唯一性,所得结果推广了现有文献中已有的结论.最后,举例说明了结果的有效性.  相似文献   

12.
利用Schaefer不动点定理,研究了一阶非线性脉冲微分方程边值问题{u'(t)=f(t,u(t)),t∈[0,T]\{tk},k=1,…,m,u(tk+)=u(tk-)+Ik(u(tk)),k=1,…,m,u(0)=βu(T)解的存在性,所得结果推广了已有的结论.  相似文献   

13.
考虑Banach空间E中分数阶微分方程边值问题{-Dβ0+u(t)=f(t,u(t)),t∈Ju(0)=u(1)={θ解的存在性,其中1〈β≤2为实数,J=[0,1],Dβ0+是标准的Riemann-Liouville导数,f:J×E→E连续.用新的非紧性测度估计技巧,在f满足比较一般的增长条件和非紧性测度条件下通过凝聚映射的不动点定理获得了该边值问题解的存在性.  相似文献   

14.
在共振条件m∑k=1a_k=1下,运用紧向量场方程的解集连通理论对二阶多点边值问题u″(t)=f(t,u(t))+e(t),t∈[0,1],u'(0)=0,u(1)=m∑k=1a_ku(η_k)建立了解的存在性和多解性结果。其中,f:[0,1]×R→R连续,e∈C([0,1],R),0η_1η_2…η_m1,a_k0(k=1,2,…,m)。  相似文献   

15.
本文研究了带有导数项的非线性Newmann问题{u"(t)+ku(t)=f(t,u(t),u'(t)),t∈(0,1),u'(0)=u'(1)=0正解的存在性,其中0k≤π~2/4,f:[0,1]×R~+×R→R~+连续.当函数f(t,x,y)关于x和y满足一定的超线性增长条件及Nagumo条件时,本文得到了问题正解的存在性.主要结果的证明基于不动点指数理论.  相似文献   

16.
本文研究了一类四阶常微分方程非线性边值问题u'=rf(t,u(t)),0t1,u(0)=u'(0)=u'(1)=u'(1)+ψ(u(1))=0正解的存在性,其中r是一个正参数,ψ(s)=sc(s),c∈C([0,∞),[0,12)∪(12,∞)),且当u→0~+时f(t,u)=au+o(u),ψ(s)=a_1s+o(s);当u→∞时,f(t,u)=bu+o(u),ψ(s)=b_1s+o(s).主要结果的证明基于Dancer全局分歧理论.  相似文献   

17.
讨论完全三阶边值问题{u?(t)=f(t,u(t),u'(t),u″(t)),t∈[0,1],u(0)=u'(1)=u″(1)=0解的存在性,其中f:[0,1]×R3→R连续.通过建立极大值原理,在非线性项f(t,x,y,z)关于x,y,z满足单调性条件的情形下,运用上下解的单调迭代方法,获得了解的存在性结果.  相似文献   

18.
本文应用上下解方法研究了如下分数阶常微分方程多点边值问题{x~((δ))(t)=f(t,x(t)),t∈[a,b],a0,x(a)+m∑k=1a_kx(t_k)=c解的存在性,其中f:[a,b]×R→R是L~1-Carathéodory函数,δ∈(0,1],c∈R,t_k(k=1,2,…,m)为满足at_1t_2…t_mb,a_k0以及1+m∑k=1a_k0的常数.  相似文献   

19.
有序Banach空间非线性二阶边值问题解的存在性   总被引:4,自引:2,他引:2  
讨论了有序Banach空间E中的非线性二阶边值问题-u″(t)=f(t,u(t)), 0≤t≤1,u(0)=u(1)=θ解的存在性,其中f:[0,1]×EE连续.我们在不假定f满足非紧性测度条件及上下解存在的情形下,用算子谱理论与半序方法获得了解的存在性结果.  相似文献   

20.
讨论完全三阶边值问题{-u''(t)=f(t,u(t),u'(t),u″(t)),t∈[0,1],u(0)=u'(0)=u″(1)=0解的存在性与唯一性,其中f:[0,1]×R~3→R连续.在非线性项f(t,x,y,z)关于z满足适当的Nagumo条件下,运用特殊的截断技巧、Leray-Schauder不动点定理及上下解方法,获得了该方程解的存在性与唯一性结果.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号