首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Experimental evidence for human mitochondrial DNA (mtDNA) recombination was recently obtained in an individual with paternal inheritance of mtDNA and in an in vitro cell culture system. Whether mtDNA recombination is a common event in humans remained to be determined. To detect mtDNA recombination in human skeletal muscle, we analyzed the distribution of alleles in individuals with multiple mtDNA heteroplasmy using single-cell PCR and allele-specific PCR. In all ten individuals who carried a heteroplasmic D-loop mutation and a distantly located tRNA point mutation or a large deletion, we observed a mixture of four allelic combinations (tetraplasmy), a hallmark of recombination. Twelve of 14 individuals with closely located heteroplasmic D-loop mutation pairs contained a mixture of only three types of mitochondrial genomes (triplasmy), consistent with the absence of recombination between adjacent markers. These findings indicate that mtDNA recombination is common in human skeletal muscle.  相似文献   

2.
Mutant mitochondrial thymidine kinase in mitochondrial DNA depletion myopathy.   总被引:19,自引:0,他引:19  
The mitochondrial deoxyribonucleotide (dNTP) pool is separated from the cytosolic pool because the mitochondria inner membrane is impermeable to charged molecules. The mitochondrial pool is maintained by either import of cytosolic dNTPs through dedicated transporters or by salvaging deoxynucleosides within the mitochondria; apparently, enzymes of the de novo dNTP synthesis pathway are not present in the mitochondria. In non-replicating cells, where cytosolic dNTP synthesis is down-regulated, mtDNA synthesis depends solely on the mitochondrial salvage pathway enzymes, the deoxyribonucleosides kinases. Two of the four human deoxyribonucleoside kinases, deoxyguanosine kinase (dGK) and thymidine kinase-2 (TK2), are expressed in mitochondria. Human dGK efficiently phosphorylates deoxyguanosine and deoxyadenosine, whereas TK2 phosphorylates deoxythymidine, deoxycytidine and deoxyuridine. Here we identify two mutations in TK2, histidine 90 to asparagine and isoleucine 181 to asparagine, in four individuals who developed devastating myopathy and depletion of muscular mitochondrial DNA in infancy. In these individuals, the activity of TK2 in muscle mitochondria is reduced to 14-45% of the mean value in healthy control individuals. Mutations in TK2 represent a new etiology for mitochondrial DNA depletion, underscoring the importance of the mitochondrial dNTP pool in the pathogenesis of mitochondrial depletion.  相似文献   

3.
4.
Nuclear genetic control of mitochondrial DNA segregation   总被引:8,自引:0,他引:8  
Mammalian mitochondrial DNA (mtDNA) is a high copy-number, maternally inherited genome that codes for a small number of essential proteins involved in oxidative phosphorylation. Mutations in mtDNA are responsible for a broad spectrum of clinical disorders. The segregation pattern of pathogenic mtDNA mutants is an important determinant of the nature and severity of mitochondrial disease, but it varies with the specific mutation, cell type and nuclear background and generally does not correlate well with mitochondrial dysfunction. To identify nuclear genes that modify the segregation behavior of mtDNA, we used a heteroplasmic mouse model derived from two inbred strains (BALB/c and NZB; ref. 12), in which we had previously demonstrated tissue-specific and age-dependent directional selection for different mtDNA genotypes in the same mouse. Here we show that this phenotype segregates in F2 mice from a genetic cross (BALB/c x CAST/Ei) and that it maps to at least three quantitative-trait loci (QTLs). Genome-wide scans showed linkage of the trait to loci on Chromosomes 2, 5 and 6, accounting for 16-35% of the variance in the trait, depending on the tissue and age of the mouse. This is the first genetic evidence for nuclear control of mammalian mtDNA segregation.  相似文献   

5.
6.
Identifying individuals by sequencing mitochondrial DNA from teeth.   总被引:9,自引:0,他引:9  
Mitochondrial DNA (mtDNA) was extracted from teeth stored from 3 months to 20 years, including teeth from the semi-skeletonized remains of a murder victim which had been buried for 10 months. Tooth donors and/or their maternal relatives provided blood or buccal cells, from which mtDNA was also extracted. Enzymatic amplification and direct sequencing of roughly 650 nucleotides from two highly polymorphic regions of mtDNA yielded identical sequences for each comparison of tooth and fresh DNA. Our results suggest that teeth provide an excellent source for high molecular weight mtDNA that can be valuable for extending the time in which decomposed human remains can be genetically identified.  相似文献   

7.
Egan CM  Sridhar S  Wigler M  Hall IM 《Nature genetics》2007,39(11):1384-1389
Different species, populations and individuals vary considerably in the copy number of discrete segments of their genomes. The manner and frequency with which these genetic differences arise over generational time is not well understood. Taking advantage of divergence among lineages sharing a recent common ancestry, we have conducted a genome-wide analysis of spontaneous copy number variation (CNV) in the laboratory mouse. We used high-resolution microarrays to identify 38 CNVs among 14 colonies of the C57BL/6 strain spanning approximately 967 generations of inbreeding, and we examined these loci in 12 additional strains. It is clear from our results that many CNVs arise through a highly nonrandom process: 18 of 38 were the product of recurrent mutation, and rates of change varied roughly four orders of magnitude across different loci. Recurrent CNVs are found throughout the genome, affect 43 genes and fluctuate in copy number over mere hundreds of generations, observations that raise questions about their contribution to natural variation.  相似文献   

8.
The mitochondrial (mt) DNA depletion syndromes (MDDS) are genetic disorders characterized by a severe, tissue-specific decrease of mtDNA copy number, leading to organ failure. There are two main clinical presentations: myopathic (OMIM 609560) and hepatocerebral (OMIM 251880). Known mutant genes, including TK2, SUCLA2, DGUOK and POLG, account for only a fraction of MDDS cases. We found a new locus for hepatocerebral MDDS on chromosome 2p21-23 and prioritized the genes on this locus using a new integrative genomics strategy. One of the top-scoring candidates was the human ortholog of the mouse kidney disease gene Mpv17. We found disease-segregating mutations in three families with hepatocerebral MDDS and demonstrated that, contrary to the alleged peroxisomal localization of the MPV17 gene product, MPV17 is a mitochondrial inner membrane protein, and its absence or malfunction causes oxidative phosphorylation (OXPHOS) failure and mtDNA depletion, not only in affected individuals but also in Mpv17-/- mice.  相似文献   

9.
Mutations of mitochondrial DNA (mtDNA) are an important cause of genetic disease. We describe a family with an unusual homoplasmic mutation that resulted in six neonatal deaths and one surviving child with Leigh syndrome. The mother is clinically normal, but a severe biochemical and molecular genetic defect was present in both a fatally affected child and the mother. This family highlights the role of homoplasmic mt-tRNA mutations in genetic disease.  相似文献   

10.
Large-scale deletions of mitochondrial DNA (mtDNA) are associated with a subgroup of mitochondrial encephalomyopathies. We studied seven patients with Kearns-Sayre syndrome or isolated ocular myopathy who harboured a sub-population of partially-deleted mitochondrial genomes in skeletal muscle. Variable cytochrome c oxidase (COX) deficiencies and reduction of mitochondrially-encoded polypeptides were found in affected muscle fibres, but while many COX-deficient fibres had increased levels of mutant mtDNA, they almost invariably had reduced levels of normal mtDNA. Our results suggest that a specific ratio between mutant and wild-type mitochondrial genomes is the most important determinant of a focal respiratory chain deficiency, even though absolute copy numbers may vary widely.  相似文献   

11.
Mitochondrial DNA (mtDNA) mutations are thought to have a causal role in many age-related pathologies. Here we identify mtDNA deletions as a driving force behind the premature aging phenotype of mitochondrial mutator mice, and provide evidence for a homology-directed DNA repair mechanism in mitochondria that is directly linked to the formation of mtDNA deletions. In addition, our results demonstrate that the rate at which mtDNA mutations reach phenotypic expression differs markedly among tissues, which may be an important factor in determining the tolerance of a tissue to random mitochondrial mutagenesis.  相似文献   

12.
The levels of a specific mitochondrial DNA deletion (mtDNA4977) measured in 12 brain regions of 6 normal adults 39 to 82 years old exhibited striking variation among anatomical locations. Comparisons of the same region among individuals showed an increase of mtDNA4977 with age. The three regions with the highest levels, caudate, putamen and substantia nigra, are characterized by a high dopamine metabolism. The breakdown of dopamine by mitochondrial MAO produces H2O2 which can lead to oxygen radical formation. We suggest that mtDNA4977 may be the "tip of the iceberg" of the spectrum of somatic mutations produced by oxidative damage.  相似文献   

13.
The abundance and dynamics of copy number variants (CNVs) in mammalian genomes poses new challenges in the identification of their impact on natural and disease phenotypes. We used computational and experimental methods to catalog CNVs in rat and found that they share important functional characteristics with those in human. In addition, 113 one-to-one orthologous genes overlap CNVs in both human and rat, 80 of which are implicated in human disease. CNVs are nonrandomly distributed throughout the genome. Chromosome 18 is a cold spot for CNVs as well as evolutionary rearrangements and segmental duplications, suggesting stringent selective mechanisms underlying CNV genesis or maintenance. By exploiting gene expression data available for rat recombinant inbred lines, we established the functional relationship of CNVs underlying 22 expression quantitative trait loci. These characteristics make the rat an excellent model for studying phenotypic effects of structural variation in relation to human complex traits and disease.  相似文献   

14.
Recent advances in sequencing technology make it possible to comprehensively catalog genetic variation in population samples, creating a foundation for understanding human disease, ancestry and evolution. The amounts of raw data produced are prodigious, and many computational steps are required to translate this output into high-quality variant calls. We present a unified analytic framework to discover and genotype variation among multiple samples simultaneously that achieves sensitive and specific results across five sequencing technologies and three distinct, canonical experimental designs. Our process includes (i) initial read mapping; (ii) local realignment around indels; (iii) base quality score recalibration; (iv) SNP discovery and genotyping to find all potential variants; and (v) machine learning to separate true segregating variation from machine artifacts common to next-generation sequencing technologies. We here discuss the application of these tools, instantiated in the Genome Analysis Toolkit, to deep whole-genome, whole-exome capture and multi-sample low-pass (~4×) 1000 Genomes Project datasets.  相似文献   

15.
Diabetes mellitus (DM) is one of the most common chronic disorders of children and adults. Several reports have suggested an increased incidence of maternal transmission in some forms of DM. Therefore, we tested a pedigree with maternally transmitted DM and deafness for mitochondrial DNA mutations and discovered a 10.4 kilobase (kb) mtDNA deletion. This deletion is unique because it is maternally inherited, removes the light strand origin (OL) of mtDNA replication, inhibits mitochondrial protein synthesis, and is not associated with the hallmarks of mtDNA deletion syndromes. This discovery demonstrates that DM can be caused by mtDNA mutations and suggests that some of the heterogeneity of this disease results from the novel features of mtDNA genetics.  相似文献   

16.
Mitochondrial DNA (mtDNA)-depletion syndromes (MDS; OMIM 251880) are phenotypically heterogeneous, autosomal-recessive disorders characterized by tissue-specific reduction in mtDNA copy number. Affected individuals with the hepatocerebral form of MDS have early progressive liver failure and neurological abnormalities, hypoglycemia and increased lactate in body fluids. Affected tissues show both decreased activity of the mtDNA-encoded respiratory chain complexes (I, III, IV, V) and mtDNA depletion. We used homozygosity mapping in three kindreds of Druze origin to map the gene causing hepatocerebral MDS to a region of 6.1 cM on chromosome 2p13, between markers D2S291 and D2S2116. This interval encompasses the gene (DGUOK) encoding the mitochondrial deoxyguanosine kinase (dGK). We identified a single-nucleotide deletion (204delA) within the coding region of DGUOK that segregates with the disease in the three kindreds studied. Western-blot analysis did not detect dGK protein in the liver of affected individuals. The main supply of deoxyribonucleotides (dNTPs) for mtDNA synthesis comes from the salvage pathway initiated by dGK and thymidine kinase-2 (TK2). The association of mtDNA depletion with mutated DGUOK suggests that the salvage-pathway enzymes are involved in the maintenance of balanced mitochondrial dNTP pools.  相似文献   

17.
Mammalian mitochondrial DNA (mtDNA) is inherited principally down the maternal line, but the mechanisms involved are not fully understood. Females harboring a mixture of mutant and wild-type mtDNA (heteroplasmy) transmit a varying proportion of mutant mtDNA to their offspring. In humans with mtDNA disorders, the proportion of mutated mtDNA inherited from the mother correlates with disease severity. Rapid changes in allele frequency can occur in a single generation. This could be due to a marked reduction in the number of mtDNA molecules being transmitted from mother to offspring (the mitochondrial genetic bottleneck), to the partitioning of mtDNA into homoplasmic segregating units, or to the selection of a group of mtDNA molecules to re-populate the next generation. Here we show that the partitioning of mtDNA molecules into different cells before and after implantation, followed by the segregation of replicating mtDNA between proliferating primordial germ cells, is responsible for the different levels of heteroplasmy seen in the offspring of heteroplasmic female mice.  相似文献   

18.
Here we show that in substantia nigra neurons from both aged controls and individuals with Parkinson disease, there is a high level of deleted mitochondrial DNA (mtDNA) (controls, 43.3% +/- 9.3%; individuals with Parkinson disease, 52.3% +/- 9.3%). These mtDNA mutations are somatic, with different clonally expanded deletions in individual cells, and high levels of these mutations are associated with respiratory chain deficiency. Our studies suggest that somatic mtDNA deletions are important in the selective neuronal loss observed in brain aging and in Parkinson disease.  相似文献   

19.
Researchers in several laboratories have reported a high frequency of homoplasmic mitochondrial DNA (mtDNA) mutations in human tumors. This observation has been interpreted to reflect a replicative advantage for mutated mtDNA copies, a growth advantage for a cell containing certain mtDNA mutations, and/or tumorigenic properties of mtDNA mutations. We consider another possibility-that the observed homoplasmy arose entirely by chance in tumor progenitor cells, without any physiological advantage or tumorigenic requirement. Through extensive computer modeling, we demonstrate that there is sufficient opportunity for a tumor progenitor cell to achieve homoplasmy through unbiased mtDNA replication and sorting during cell division. To test our model in vivo, we analyzed mtDNA homoplasmy in healthy human epithelial tissues and discovered that the model correctly predicts the considerable observed frequency of homoplasmic cells. Based on the available data on mitochondrial mutant fractions and cell division kinetics, we show that the predicted frequency of homoplasmy in tumor progenitor cells in the absence of selection is similar to the reported frequency of homoplasmic mutations in tumors. Although a role for other mechanisms is not excluded, random processes are sufficient to explain the incidence of homoplasmic mtDNA mutations in human tumors.  相似文献   

20.
Extensive complementation between fused mitochondria is indicated by recombination of 'parental' mitochondrial (mt) DNA (ref. 1,2) of yeast and plant cells. It has been difficult, however, to demonstrate the occurrence of complementation between fused mitochondria in mammalian species through the presence of recombinant mtDNA molecules, because sequence of mtDNA throughout an individual tends to be uniform owing to its strictly maternal inheritance. We isolated two types of respiration-deficient cell lines, with pathogenic mutations in mitochondrial tRNAIle or tRNALeu(UUR) genes from patients with mitochondrial diseases. The coexistence of their mitochondria within hybrids restored their normal morphology and respiratory enzyme activity by 10-14 days after fusion, indicating the presence of an extensive and continuous exchange of genetic contents between the mitochondria. This complementation between fused mitochondria may represent a defence of highly oxidative organelles against mitochondrial dysfunction caused by the accumulation of mtDNA lesions with age.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号