首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mechanism by which the novel, pure glucose-dependent insulinotropic, imidazoline derivative BL11282 promotes insulin secretion in pancreatic islets has been investigated. The roles of KATP channels, α2-adrenoreceptors, the I1-receptor-phosphatidylcholine-specific phospholipase (PC-PLC) pathway and arachidonic acid signaling in BL11282 potentiation of insulin secretion in pancreatic islets were studied. Using SUR1(-/-) deficient mice, the previous notion that the insulinotropic activity of BL11282 is not related to its interaction with KATP channels was confirmed. Insulinotropic activity of BL11282 was not related to its effect on α2-adrenoreceptors, I1-imidazoline receptors or PC-PLC. BL11282 significantly increased [3H]arachidonic acid production. This effect was abolished in the presence of the iPLA2 inhibitor, bromoenol lactone. The data suggest that potentiation of glucose-induced insulin release by BL11282, which is independent of concomitant changes in cytoplasmic free Ca2+ concentration, involves release of arachidonic acid by iPLA2 and its metabolism to epoxyeicosatrienoic acids through the cytochrome P-450 pathway. Received 5 July 2007; received after revision 18 September 2007; accepted 20 September 2007  相似文献   

2.
ATP-dependent potassium (KATP) channels occupy a key position in the control of insulin release from the pancreatic β cell since they couple cell polarity to metabolism. These channels close when more ATP is produced via glucose metabolism. They are also controlled by sulfonylureas, a class of drugs used in type 2 diabetic patients for triggering insulin secretion from β cells that have lost part of their sensitivity to glucose. We have demonstrated the existence of endogenous counterparts to sulfonylureas which we have called ‘endosulfines.’ In this review, we describe the discovery, isolation, cloning, and biological features of the high-molecular-mass form, α-endosulfine, and discuss its possible role in the physiology of the β cell as well as in pathology. Received 1 February 1999; received after revision 26 March 1999; accepted 26 March 1999  相似文献   

3.
Amelogenin gene splice products: potential signaling molecules   总被引:3,自引:0,他引:3  
The amelogenins, the major proteins of the developing tooth enamel matrix, are highly conserved throughout most species studied. The gene structure is similar, with a set of seven exons and intervening introns, and remarkable conservation of particular exon sizes over divergent species. Studies of exon skipping and consequent alternative gene splicing suggest that, in vertebrates, exon definition is crucial. In this mechanism, exon size is important. If too small, an exon can be readily skipped, if too large, internal cryptic splice sites may be utilized. Other factors, such as intron length and specific nucleotide sequences at the splice boundaries also modulate splicing efficiency, but amelogenin gene splicing conforms well to the generalized exon length model. Exons 1, 2 and 7 are not subject to splicing that affects the secreted protein product, but exons 3, 4 and 5 are at the lower boundary of exon size, rendering them, 4 and 5 especially, subject to skipping. On the other hand, exon 6 is very long and has cryptic splicing sites that can be used. In the mouse, nine distinct splice product proteins have been detected. The question now is the functions of these products. The larger forms, those that contain the intact proline-rich, hydrophobic exon 6 domains, are important for enamel mineralization. Recent work suggests that the small proteins resulting from deletion of a major part of amelogenin gene exon 6 via utilization of a cryptic site may have signal transduction functions during tooth development. Furthermore, new work also suggests that odontoblasts transiently express the small amelogenins during the period that epithelial-mesenchymal signaling between preodontoblasts and preameloblasts determines the course of tooth development. The same peptides have been demonstrated to act on non-odontogenic cells and effect their phenotypic expression patterns in vitro, and to induce bone formation in implants in vivo. Received 20 March 2002; received after revision 2 July 2002; accepted 3 July 2002  相似文献   

4.
The metabolism of all-trans- and 9-cis-retinol/ retinaldehyde has been investigated with focus on the activities of human, mouse and rat alcohol dehydrogenase 2 (ADH2), an intriguing enzyme with apparently different functions in human and rodents. Kinetic constants were determined with an HPLC method and a structural approach was implemented by in silico substrate dockings. For human ADH2, the determined Km values ranged from 0.05 to 0.3 μM and kcat values from 2.3 to 17.6 min−1, while the catalytic efficiency for 9-cis-retinol showed the highest value for any substrate. In contrast, poor activities were detected for the rodent enzymes. A mouse ADH2 mutant (ADH2Pro47His) was studied that resembles the human ADH2 setup. This mutation increased the retinoid activity up to 100-fold. The Km values of human ADH2 are the lowest among all known human retinol dehydrogenases, which clearly support a role in hepatic retinol oxidation at physiological concentrations. Received 12 October 2006; received after revision 6 December 2006; accepted 8 January 2007  相似文献   

5.
The function and survival of pancreatic β cells critically rely on complex electrical signaling systems composed of a series of ionic events, namely fluxes of K+, Na+, Ca2+ and Cl? across the β cell membranes. These electrical signaling systems not only sense events occurring in the extracellular space and intracellular milieu of pancreatic islet cells, but also control different β cell activities, most notably glucose-stimulated insulin secretion. Three major ion fluxes including K+ efflux through ATP-sensitive K+ (KATP) channels, the voltage-gated Ca2+ (CaV) channel-mediated Ca2+ influx and K+ efflux through voltage-gated K+ (KV) channels operate in the β cell. These ion fluxes set the resting membrane potential and the shape, rate and pattern of firing of action potentials under different metabolic conditions. The KATP channel-mediated K+ efflux determines the resting membrane potential and keeps the excitability of the β cell at low levels. Ca2+ influx through CaV1 channels, a major type of β cell CaV channels, causes the upstroke or depolarization phase of the action potential and regulates a wide range of β cell functions including the most elementary β cell function, insulin secretion. K+ efflux mediated by KV2.1 delayed rectifier K+ channels, a predominant form of β cell KV channels, brings about the downstroke or repolarization phase of the action potential, which acts as a brake for insulin secretion owing to shutting down the CaV channel-mediated Ca2+ entry. These three ion channel-mediated ion fluxes are the most important ionic events in β cell signaling. This review concisely discusses various ionic mechanisms in β cell signaling and highlights KATP channel-, CaV1 channel- and KV2.1 channel-mediated ion fluxes.  相似文献   

6.
Bafilomycin A1 (Baf) induces an elevation of cytosolic Ca2+ and acidification in neuronal cells via inhibition of the V-ATPase. Also, Baf uncouples mitochondria in differentiated PC12 (dPC12), dSH-SY5Y cells and cerebellar granule neurons, and markedly elevates their respiration. This respiratory response in dPC12 is accompanied by morphological changes in the mitochondria and decreases the mitochondrial pH, Ca2+ and ΔΨm. The response to Baf is regulated by cytosolic Ca2+ fluxes from the endoplasmic reticulum. Inhibition of permeability transition pore opening increases the depolarizing effect of Baf on the ΔΨm. Baf induces stochastic flickering of the ΔΨm with a period of 20 ± 10 s. Under conditions of suppressed ATP production by glycolysis, oxidative phosphorylation impaired by Baf does not provide cells with sufficient ATP levels. Cells treated with Baf become more susceptible to excitation with KCl. Such mitochondrial uncoupling may play a role in a number of (patho)physiological conditions induced by Baf.  相似文献   

7.
10 mM isatin (2,3-dioxoindole) inhibited glucose influx into human erythrocytes by over 30%. The inhibition is of the competitive type, where the affinity constant (Kt) was increased from 5.71 (control) to 11.11 mM in the presence of isatin with no change in Vmax (130 nmol/min/ml packed cells). The observed inhibition of sugar transport by isatin was not mediated through membrane–SH groups accessible to iodoacetate, iodoacetamide, DTNB, DNP or sodium arsenite. Isatin inhibited sugar transport in the presence of 2 mM harmaline, an alkaloid inhibitor of Na+, K+–ATPase activity. The inhibition was non additive which suggests that these two compounds interact with the same or a similar site on the erythrocyte membrane.  相似文献   

8.
Hypoxia-inducible factor-1α (HIF-1α) protein is degraded under normoxia by its association to von Hippel-Lindau protein (pVHL) and further proteasomal digestion. However, human renal cells HK-2 treated with 15-deoxy-Δ12,14-prostaglandin-J2 (15d-PGJ2) accumulate HIF-1α in normoxic conditions. Thus, we aimed to investigate the mechanism involved in this accumulation. We found that 15d-PGJ2 induced an over-accumulation of HIF-1α in RCC4 cells, which lack pVHL and in HK-2 cells treated with inhibitors of the pVHL-proteasome pathway. These results indicated that pVHL-proteasome-independent mechanisms are involved, and therefore we aimed to ascertain them. We have identified a new lysosomal-dependent mechanism of HIF-1α degradation as a target for 15d-PGJ2 based on: (1) HIF-1α colocalized with the specific lysosomal marker Lamp-2a, (2) 15d-PGJ2 inhibited the activity of cathepsin B, a lysosomal protease, and (3) inhibition of lysosomal activity did not result in over-accumulation of HIF-1α in 15d-PGJ2-treated cells. Therefore, expression of HIF-1α is also modulated by lysosomal degradation.  相似文献   

9.
U7 snRNAs induce correction of mutated dystrophin pre-mRNA by exon skipping   总被引:4,自引:0,他引:4  
Most cases of Duchenne muscular dystrophy are caused by dystrophin gene mutations that disrupt the mRNA reading frame. Artificial exclusion (skipping) of a single exon would often restore the reading frame, giving rise to a shorter, but still functional dystrophin protein. Here, we analyzed the ability of antisense U7 small nuclear (sn)RNA derivatives to alter dystrophin pre-mRNA splicing. As a proof of principle, we first targeted the splice sites flanking exon 23 of dystrophin pre-mRNA in the wild-type muscle cell line C2C12 and showed precise exon 23 skipping. The same strategy was then successfully adapted to dystrophic immortalized mdx muscle cells where exon-23-skipped dystrophin mRNA rescued dystrophin protein synthesis. Moreover, we observed a stimulation of antisense U7 snRNA expression by the murine muscle creatine kinase enhancer. These results demonstrate that alteration of dystrophin pre-mRNA splicing could correct dystrophin gene mutations by expression of specific U7 snRNA constructs.  相似文献   

10.
It has been proposed that neuroinflammation, among other factors, may trigger an aberrant neuronal cell cycle re-entry leading to neuronal death. Cell cycle disturbances are also detectable in peripheral cells from Alzheimer’s disease (AD) patients. We previously reported that the anti-inflammatory 15- deoxy-Δ12,14-prostaglandin J 2 (15d-PGJ 2) increased the cellular content of the cyclin-dependent kinase inhibitor p27, in lymphoblasts from AD patients. This work aimed at elucidating the mechanisms of 15d-PGJ 2-induced p27 accumulation. Phosphorylation, half-life, and the nucleo-cytoplasmic traffic of p27 protein were altered by 15d-PGJ2 by mechanisms dependent on PI3K/Akt activity. 15d-PGJ 2 prevents the calmodulin-dependent Akt overactivation in AD lymphoblasts by blocking its binding to the 85-kDa regulatory subunit of PI3K. These effects of 15d-PGJ 2 were not mimicked by 9,10-dihydro-15-deoxy-Δ12,14- prostaglandin J 2, suggesting that 15d-PGJ 2 acts independently of peroxisome proliferator-activated receptor γ activation and that the α,β-unsaturated carbonyl group in the cyclopentenone ring of 15d-PGJ 2 is a requisite for the observed effects. Received 14 July 2008; received after revision 2 September 2008; accepted 12 September 2008  相似文献   

11.
ORP1L is an oxysterol binding homologue that regulates late endosome (LE) positioning. We show that ORP1L binds several oxysterols and cholesterol, and characterize a mutant, ORP1L Δ560–563, defective in oxysterol binding. While wild-type ORP1L clusters LE, ORP1L Δ560–563 induces LE scattering, which is reversed by disruption of the endoplasmic reticulum (ER) targeting FFAT motif, suggesting that it is due to enhanced LE–ER interactions. Endosome motility is reduced upon overexpression of ORP1L. Both wild-type ORP1L and the Δ560–563 mutant induce the recruitment of both dynactin and kinesin-2 on LE. Most of the LE decorated by overexpressed ORP1L fail to accept endocytosed dextran or EGF, and the transfected cells display defective degradation of internalized EGF. ORP1L silencing in macrophage foam cells enhances endosome motility and results in inhibition of [3H]cholesterol efflux to apolipoprotein A-I. These data demonstrate that LE motility and functions in both protein and lipid transport are regulated by ORP1L.  相似文献   

12.
The development of functional blood and lymphatic vessels requires spatio-temporal coordination of the production and release of growth factors such as vascular endothelial growth factors (VEGFs). VEGF family proteins are produced in multiple isoforms with distinct biological properties and bind to three types of VEGF receptors. A VEGF-A splice variant, VEGF-A165b, has recently been isolated from kidney epithelial cells. This variant is identical to VEGF-A165 except for the last six amino acids encoded by an alternative exon. VEGF-A165b and VEGF-A165 bind VEGF receptors 1 and 2 with similar affinity. VEGF-A165b elicits drastically reduced activity in angiogenesis assays and even counteracts signaling by VEGF-A165. VEGF-A165b weakly binds to heparan sulfate and does not interact with neuropilin-1, a coreceptor for VEGF receptor 2. To determine the molecular basis for altered signaling by VEGF-A165b we measured VEGF receptor 2 and ERK kinase activity in endothelial cells in culture. VEGF-A165 induced strong and sustained activation of VEGF receptor 2 and ERK-1 and −2, while activation by VEGF-A165b was only weak and transient. Taken together these data show that VEGF-A165b has attenuated signaling potential through VEGF receptor 2 defining this new member of the VEGF family as a partial receptor agonist. Received 31 May 2006; received after revision 26 June 2006; accepted 14 July 2006  相似文献   

13.
Mutation of tubulin chaperone E (TBCE) underlies hypoparathyroidism, retardation, and dysmorphism (HRD) syndrome with defective microtubule (MT) cytoskeleton. TBCE/yeast Pac2 comprises CAP-Gly, LRR (leucine-rich region), and UbL (ubiquitin-like) domains. TBCE folds α-tubulin and promotes α/β dimerization. We show that Pac2 functions in MT dynamics: the CAP-Gly domain binds α-tubulin and MTs, and functions in suppression of benomyl sensitivity of pac2Δ mutants. Pac2 binds proteasomes: the LRR binds Rpn1, and the UbL binds Rpn10; the latter interaction mediates Pac2 turnover. The UbL also binds the Skp1-Cdc53-F-box (SCF) ubiquitin ligase complex; these competing interactions for the UbL may impact on MT dynamics. pac2Δ mutants are sensitive to misfolded protein stress. This is suppressed by ectopic PAC2 with both the CAP-Gly and UbL domains being essential. We propose a novel role for Pac2 in the misfolded protein stress response based on its ability to interact with both the MT cytoskeleton and the proteasomes.  相似文献   

14.
The ability of three isoforms of protein kinase CK1 (α, γ1, and δ) to phosphorylate the N-terminal region of p53 has been assessed using either recombinant p53 or a synthetic peptide reproducing its 1–28 sequence. Both substrates are readily phosphoylated by CK1δ and CK1α, but not by the γ isoform. Affinity of full size p53 for CK1 is 3 orders of magnitude higher than that of its N-terminal peptide (K m 0.82 μM vs 1.51 mM). The preferred target is S20, whose phosphorylation critically relies on E17, while S6 is unaffected despite displaying the same consensus (E-x-x-S). Our data support the concept that non-primed phosphorylation of p53 by CK1 is an isoform-specific reaction preferentially affecting S20 by a mechanism which is grounded both on a local consensus and on a remote docking site mapped to the K221RQK224 loop according to modeling and mutational analysis.  相似文献   

15.
S. cerevisiae anaphase spindle elongation is accomplished by the overlapping function of dynein and the kinesin-5 motor proteins, Cin8 and Kip1. Cin8 and dynein are synthetically lethal, yet the arrest phenotypes of cells eliminated for their function had not been identified. We found that at a non-permissive temperature, dyn1Δ cells that carry a temperature-sensitive cin8 – 3 mutation arrest at mid-anaphase with a unique phenotype, which we named TAN (two microtubule asters in one nucleus). These cells enter anaphase, but fail to proceed through the slow phase of anaphase B. At a permissive temperature, dyn1Δ, cin8 – 3 or dyn1Δcin8 – 3 cells exhibit perturbed spindle midzone morphologies, with dyn1Δcin8 – 3 anaphase spindles also being profoundly bent and nonrigid. Sorbitol, which has been suggested to stabilize microtubules, corrects these defects and suppresses the TAN phenotype. We conclude that dynein and Cin8 cooperate in anaphase midzone organization and influence microtubule dynamics, thus enabling progression through the slow phase of anaphase B. Received 10 August 2008; received after revision 22 October 2008; accepted 27 October 2008  相似文献   

16.
Zusammenfassung Die Synthese von (—)-1(7)-Tetrahydrocannabinol (THC) auf (—)-1(6) wird beschrieben. Das Hauptprodukt der oxidativen Zerstörung von (—)-1-THC ist Cannabinol. Beschleunigte Versuche der Luftoxidation von (—)-1-THC und (—)-1(6)-THC haben gezeigt, dass das letztere beständiger ist. Dieser Unterschied kann mit der Reaktivität des C3-benzylisch-allylischen Wasserstoffes in (—)-1-THC erklärt werden.  相似文献   

17.
Summary If the complete rate equations for reversible, one-step, bimolecular reactions are written withP eP as the concentration variable (whereP e is the equilibrium, andP is the instantaneous, product concentration), the 3 possible stoichiometries can be reduced to a single straightforward differential equation. This can be solved very economically. For each stoichiometry, weret is time,k 1 is the forward rate constant,K e is the equilibrium constant, and P isPP o. The termsP cP o andD+P cP o are the physically possible and physically impossible roots of the quadratic equation forP eP o in terms of the initial concentrations andK c.D is the discriminant in this equation. All 3 quantities can be calculated if the equilibrium constant is known. A plot oft against ln{[1–P/(D+P cP o)]/[1–P/(P cP o)]} should be a straight line for any second order reaction. For each stoichiometry,P cP o approachesA o, the initial concentration of the first reactant, as the equilibrium constant increases. When a second reactant is present,D+P eP o approachesB o. The limiting equation is then that of an irreversible bimolecular reaction. For AP+Q,D approaches –K e as the equilibrium constant becomes large, and the value of the second logarithmic term in the integrated equation approaches zero. The limiting equation is that of an irreversible, unimolecular reaction.Acknowledgments. I thank Dr. Athel Cornish-Bowden for many helpful discussions. This work was partially supported by a grant from Utah State University.  相似文献   

18.
δ-Protocadherins constitute a group of cadherins characterized by several conserved motifs in their cytoplasmic domains. We present a phylogenetic analysis that further divides this group into δ1-protocadherins (comprising protocadherin-1, −7, −9 and −11 or -X/Y) and δ2-protocadherins (comprising protocadherin-8, −10, −17, −18 and −19). The δ-protocadherin genes, which are located on different chromosomes in man and mouse, have a similar gene structure. They are expressed as multiple splice forms, differing mostly in their cytoplasmic domains. Some δ-protocadherins were reported to mediate weak cell-cell adhesion in vitro and cell sorting in vivo. In addition, individual δ-protocadherins might play important roles in signaling pathways, as they bind to proteins such as TAF1/Set, protein phosphatase-1α and the Frizzled 7 receptor. The spatiotemporally restricted expression of δ-protocadherins in different tissues and species and the results of their functional analysis, mainly in Xenopus, suggest that they play multiple, tightly regulated roles in vertebrate development. Received 18 July 2005; received after revision 26 August 2005; accepted 2 September 2005  相似文献   

19.
Polyamines are small charged molecules essential for various cellular functions, but at high levels they are cytotoxic. Two yeast kinases, SKY1 and PTK2, have been demonstrated to regulate polyamine tolerance. Here we report the identification and characterization of additional genes involved in regulating polyamine tolerance: YGL007W, FES1 and AGP2. Deletion of YGL007W, an open reading frame located within the promoter of the membrane proton pump PMA1, decreased Pma1p expression. Deletion of FES1 or AGP2 resulted in reduced polyamine uptake. While high-affinity spermine uptake was practically absent in agp2Δ cells, fes1Δ cells displayed only reduced affinity towards spermine. Despite the reduced uptake, the resistant strains accumulated significant levels of polyamines and displayed increased ornithine decarboxylase activity, suggesting reduced polyamine sensing. Interestingly, fes1Δ cells were highly sensitive to salt ions, suggesting different underlying mechanisms. These results indicate that mechanisms leading to polyamine tolerance are complex, and involve components other than uptake. Received 31 July 2005; received after revision 7 October 2005; accepted 19 October 2005  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号