首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
High-resolution environmental records from the Tibetan Plateau are essential to understand past global climatic and environmental changes. Magnetic minerals in lake sediments are important proxies to reconstruct environmental and climatic changes. Nam Co (lake) is a typical great lake in the transitional region of southwest monsoon in the Tibetan Plateau. Previous studies have extensively focused on geochemistry, microfossils, sedimentology and biochemistry analysis of Nam Co, which provides sound interpretation of paleoclimatic and paleoenvironmental changes. However, up to now, no systematic environmental magnetic studies have been carried out. Therefore, high-resolution and systematic magnetic studies combined with geochemical parameters were carried on lake sediments of core NC 08/01 from Nam Co for the Holocene period (11.3 cal ka BP) in order to explore how magnetic properties of the sediments respond to climatic changes. Based on variations of magnetic proxies, the sequence can be separated into 3 units. Unit 1 (236-199 cm, 11.3-7.8 cal ka BP) contains dominantly coarse-grained magnetite with homogeneous grain size. A positive correlation between magnetite and Ti strongly suggests that these coarse-grained detrital magnetites reflect detrital input signals due to insignificant effects of postdepositional dissolution processes on these coarse-grained magnetite particles. For Unit 2 (198-102 cm, 7.8-2.1 cal ka BP), magnetic grain size is finer and the corresponding concentration of magnetite is also reduced. This is mainly due to significant dissolution of these fine-grained detrital magnetite particles, which were transported under reduced water flow conditions during this period. For Unit 3 (101-0 cm, 2.1-0 cal ka BP), the bulk magnetic properties are dominated by a mixture of single domain biogenic magnetite and detrital magnetite. The concentration of magnetic minerals is not correlated with the Ti content. In conclusion, the preservation of magnetic minerals in the lake sediment and thus the corresponding magnetic properties are related to the initial grain size. Combination of magnetic properties (including variation of grain size and concentration) and other proxies of detrital inputs (e.g. Ti) can be used to infer the variation of redox conditions in Nam Co. These results provide a viable framework for reconstructing the paleoenvironmental changes of this lake.  相似文献   

2.
Gas chromatography-mass spectrometry was used to identify a series of n-alkanes in the sediments of a typical glacially eroded lake in the eastern Tibetan Plateau.By comparing the distribution patterns of n-alkanes in lake sediments,surface soils and cow manure,it was shown that n-C 27-n-C 33 alkanes in the soil ecosystem of Ximen Co are derived from vascular plant species and that the distribution pattern of n-C 27-n-C 33 alkanes remains unchanged during the feeding and digestion processes of herbivores.The relative percentage of C 27,C 29 and C 31 n-alkanes decreased from the bottom to the top of the sediment core showing a trend of degradation of higher plants in the Ximen Co lake region during the formation of the 44 cm core.210 Pb dating,combined with pre-existing AMS 14 C dating results showed that the depositional core reflects climatic and environmental variations since about 900 years before present.The n-alkane indexes (ACL 27-33,P aq,P wax) are comparable with regional temperature variation,especially recording the Little Ice Age event (LIA).This study highlights that n-alkanes are valid proxies for paleo-climate and paleo-environment reconstruction,despite the same distribution patterns in n-alkane molecular fossils derived from a typical glacially eroded lake.  相似文献   

3.
Lakes’ state and abundance across the Tibetan Plateau   总被引:13,自引:0,他引:13  
Understanding the changes in number and areal extent of lakes,as well as their abundance and size distribution is important for assessments of regional and global water resources,biogeochemical cycles,and changes in climate.In this study,changes in lake area greater than 1 km2are mapped using Landsat datasets,spanning the 1970s,1990,2000,and 2010.In addition,high-resolution images(GeoCover Landsat mosaic 2000,with a pixel size of 14.25 m)are used for the first time to map lakes as small as 0.001 km2across the entire Tibetan Plateau(TP).Results show that the numbers and areal extent of individual lakes[1 km2in size show a slight decrease between the 1970s and 1990,followed by a clear increase from 1990 to 2010.Ninety-nine new lakes are identified between the 1970s and 2010,71 of which are found between 1990 and 2010.This indicates the accelerated glacier melt and/or increased difference of precipitation minus evaporation since the 1990s.More than 80%of the lakes show an increase in their area between the 1970s and2010.The lake census,using 2000 imagery,shows that there are 32,843 lakes with a total area of 43,151.08±411.49 km2,which makes up 1.4%of the total area of the TP.Around 96%of all lakes are small,with an area\1 km2,while the 1,204 large lakes([1 km2)account for96%of the total lake area.The TP is subdivided into 12greater drainage basins,and of these the inner TP dominates in terms of the number of lakes(55.03%),the total area of lakes(66%),and lake density(0.026/km2compared to the mean,0.011/km2).A plot of lake abundance against size shows that the size distribution of lakes departs from a typical power-law distribution,but displays such a distribution at the mean elevation(4,715 m),with an r2value of 0.97 and a slope of-0.66.The slopes of the abundance-size equations from each of the 12 greater basins,and from all basins together,are larger than-1,supporting the inference that larger lakes,rather than the small lakes,contribute more to the total lake surface area across the TP.The lake inventory provided in this study,along with the assessment of lake size distribution,have important implications for estimates of water balance,for water resource management,and for lake area estimations in the TP.  相似文献   

4.
The Talisayi Formation found in the Guozigou region on the southern side of Sayram Lake of Xinjiang, China is a Neoproterozoic glacigenic diamictite succession that has not been adequately researched. According to its isotopic geochronology and regional stratigraphic correlation, the Talisayi Formation is equivalent to the Ediacaran glacial sediments. The present paper provides the geochemical data of the Talisayi Formation that reveals the tectonic setting and sedimentary environment in this area during the Ediacaran period. The oxides of Si, K, Na and AI and their ratios of matrix materials from glacigenic diamictites and bulk rock of siltstone and argillaceous siltstones indicate that the sedimentary environment of this formation evolved from a tectonically active region to a passive continental margin. Values of ClA (carbonate-corrected Chemical Index of Alteration) ranging from 54 to 74 show a low-middle weathering action under a glacial environment. Total organic carbon (TOC), V/Cr, Ni/Co and U/Th ratios suggest that the sediments deposited in shallow water with an oxic and weak hydrodynamic condition. There is an abrupt rise in TOC, V/Cr, Ni/Co and U/Th ratios respectively in the overlying Lower Cambrian dolomitic limestones and in the bottom of Talisayi Formation, indicating a rapidl increase in biologic productivity and a variation in redox conditions, which was probably caused by seawater mixing of deep anoxic water and surface oxic water.  相似文献   

5.
Xu  YanWei  Kang  ShiChang  Zhang  YuLan  Zhang  YongJun 《科学通报(英文版)》2011,56(14):1511-1517
During the summer monsoon season,the moisture of precipitation events in southern and central regions of the Tibetan Plateau is mainly moisture from the Indian Ocean transported by the Indian monsoon and terrestrial vapor derived from the surface of the Tibetan Plateau.However,the respective contributions of these two types of moisture are not clear.From June to September,the excess deuterium values of precipitation and river water in the Nam Co basin are higher than those for the southern Tibetan Plateau.This reflects the mixing of evaporation from Nam Co and local atmospheric vapor.On the basis of theory for estimating the contribution of evaporative vapor from surface water bodies to atmospheric vapor and relative stable isotopes in water bodies (precipitation,river water,atmospheric moisture and lake water),this study preliminarily estimates that the average contribution of evaporation from the Lake Nam Co to local atmospheric vapor has varied from 28.4% to 31.1% during the summer monsoon season in recent years.  相似文献   

6.
Under the background of global warming,some lakes on the Tibetan Plateau(TP) are potentially sensitive to temperature change.With a case study of Pumayum Co,where glacier meltwater is important to supply(we call this a glacier-fed lake hereafter),we analyze the sensitivity of lake sediment grain size to temperature change.This is done by resolving the modern hydrodynamic process,coupled with comparison of paleoclimatic proxies.According to the spatial distributions of parameters,percentage of grain size and the grain size frequency distribution curve,hydrodynamic processes are analyzed.Five clastic sedimentation types are thereby discriminated.In the open lake area,suspended load transport is the main transport agent.Grain Size Trend Analysis(GSTA),a sediment dynamics model,reveals a trend toward eastward transport.This indicates that the largest and glacier-fed river,the Jiaqu River,influences the entire lake(not just the subsurface alluvial fan),and that lake sediment grain size may serve as a temperature indicator.Time series comparison between grain size of a short core from the central lake and meteorological data confirms this temperature indication,which in turn shows reliability of the method discriminating the hydrodynamic process.This case study will improve the ability of paleoclimatic reconstruction using lake sediment in glacier-fed lakes on the Tibetan Plateau.  相似文献   

7.
A typical lake sediment core is obtained from the Chaohu Lake in the lower reaches of the Yangtze River,Anhui Province,China.The timing scale is constrained by AMS 14 C dating method.Climate proxies such as pollen and grain size in the core are analyzed to reconstruct the environment changes at this site approximately between 9870 and 2170 cal.a BP.The results indicate that at the research area, the climate in the early-middle Holocene had evolved through 3 stages.From 9870 to 6040 cal.a BP, proxy records show a warm and dry climate with low water levels after the late-glacial period.During this stage,cool and dry events occurred at about 8910 and 6060-6030 cal.a BP.Then,between 6040 and 4860 cal.a BP,the climate was humid and vegetation was more flourishing in the Chaohu Lake Valley.The Holocene Optimum occurred at 5840-5500 cal.a BP in the Chaohu Lake,showing the best condition of water and heat.Elm Decline occurred at the period of 5380-4930 cal.a BP.Since 4860 cal.a BP,the climate was warm and dry through 2170 cal.a BP as shown in both pollen spectrum and grain-size histories.Two obvious dry events occurred in 3760 and 2170 cal.a BP,respectively.At 2170 cal.a BP,the water level of the Chaohu Lake reached the lowest as the lakebed possibly exposed. Such lake sediment observations are consistent with the historical records in this area.  相似文献   

8.
Sequential samples of a 7.82-m sediment core from Genggahai Lake in the central Gonghe Basin,controlled with 12 accelerator mass spectrometry (AMS) 14 C dates,have been analysed for total organic carbon (TOC) and total nitrogen (TN) contents,carbon isotope of bulk organic matter (δ 13 C org),and carbonate content.Plant macrofossils and stem encrustations,derived mainly from the species of P.pectinatus,M.spicatum and Chara spp.,were identified,and they dominated the aquatic plant community of the lake.Alternations of plant macrofossils of Chara spp.and the vascular species reflect the changing productivity of the lake over time.In such a shallow lake,the carbonate content is highly related to photosynthesis of aquatic macrophytes and thus indirectly indicates variations in productivity,consistent with a quantitative estimate of palaeoproductivity.Based on these results,the palaeoproductivity history was reconstructed over the past ca.16 ka.The lake was formed or recharged at 15.3 cal ka BP,as indicated by aeolian sand deposits at the core base.A marked increase in palaeoproductivity occurred from 15.3 to 11.6 cal ka BP.Between 11.6 and 9.2 cal ka BP,a sharply increased water-level,modulated probably by the enhanced Asian summer monsoon,might have exceeded the optimum water depth for macrophyte vegetation,causing a marked decline in coverage of aquatic macrophytes and low palaeoproductivity.The palaeoproductivity appeared to be high in the early stage of the period from 9.2 to 7.4 cal ka BP,and then decreased at approximately 8.6 cal ka BP.The palaeoproductivity sustained an overall high level between 7.4 and 2.1 cal ka BP,and decreased gradually since 2.1 cal ka BP.Our results suggest that the variability of Genggahai Lake palaeoproductivity may be associated with fluctuations of the lake level controlled by the strength of the Asian summer monsoon,probably indicating changes in the Asian summer monsoon.  相似文献   

9.
Remote sensing images can be used to delineate variations in the area of lakes and to assess the influence of environmental changes and human activities.However,because lakes are dynamic,results obtained from individual images acquired on a single date are not representative and do not accurately reflect ongoing changes.In this study,we used 8-day moderate resolution imaging spectroradiometer(MODIS)composite data from 2000 to2010 to map water surface changes over 629 lakes in China.We combined automatic extraction of training data and support vector machine classification to derive the spatial distribution of these large water bodies.The producer’s and user’s accuracies for MODIS images were91.06%and 89.81%,respectively,when compared with interpretation results from 30 m resolution Landsat images taken on similar days.Area changes,variability,inundation intensity,and rainy seasons of the 629 lakes were analyzed based on this multi-temporal lake database.The total area of the 629 lakes increased over the study period,primarily as a result of the expansion of lake areas on the Tibetan Plateau.There were 12 lakes with a maximum area[1,000 km2,and six of these decreased in area from 2000to 2010.The shrinkages of Poyang Lake and Dongting Lake were-54.76 and-25.08 km2/a,respectively.The area of lakes on Tibetan Plateau,in northern Xinjiang,northeastern Inner Mongolia,and northeastern China varied little,while lakes on the Yangtze Plain,in southern Inner Mongolia,and central Xinjiang fluctuated considerably.Inundation intensity increased for lakes on the Tibetan Plateau,in northern Xinjiang,Heilongjiang,and Jilin,while inundation extent decreased in central Xinjiang,southern Tibet,southern Inner Mongolia,Sichuan,and on the Yangtze Plain.This study is an attempt to develop high-frequency specific land cover maps to improve applicability of general land cover maps.The lake products serve as an important supplement to hydrologic data.The lake database enables the generation of new land surface process models,which could improve the precision of simulations,based on more accurate observations of dynamic lake systems.  相似文献   

10.
Late Pleistocene glaciation of the Changbai Mountains in northeastern China   总被引:6,自引:0,他引:6  
Zhang  Wei  Niu  Yunbo  Yan  Ling  Cui  Zhijiu  Li  ChuanChuan  Mu  Kehua 《科学通报(英文版)》2008,53(17):2672-2684
The Changbai Mountains (2749 m a.s.l.) in northeastern China are one of the typical mountain regions with glaciation since late Pleistocene as evidenced by well-preserved erosive and accumulative landforms at elevations above 2000 m a.s.l, formed by glaciers around the crater lake, Tianchi Lake. Cirque glaciers developed on both the inner and outer sides of the volcanic cone. Well-preserved cirques, glacial trough valleys, glacial threholds, polished surfaces of the glacial erratics and the moraine ridges indicate that several glaciation processes took place during the last glacial period in this region. Resuits of optically stimulated luminescence (OSL) dating on the moraine sediments, and the K/Ar, thermal ionization mass spectrometry (TIMS), electronic spinning resonance (ESR) dating on the volcanic rocks suggest two periods of glacier advances. One is named the Black Wind Mouth glacier advance taking place on the west and north slopes of the volcanic cone at an elevation of 2000-2100 m a.s.l., which is dated to about 20 ka, being the result of the Last Glacial Maximum (LGM). The other is named the Meteorological Station glacier advance at the elevation of 2400-2600 m a.s.l., dated to 11 ka during the late glacial period, and is tentatively correlated to the Younger Dryas stage. The scope of the former glacier advance is larger than that of the latter. Regional comparisons showed that the glacial sequences in the Changbai Mountains are similar to other glaciated areas in eastern Asia during the later part of the last glacial cycle.  相似文献   

11.
A 380-cm-long sediment core was acquired from the deep water area of Pumoyum Co, southern Tibet. Twenty-five plant residue samples were selected, and organic carbon stable isotopes were obtained using the AMS 14C chronological method. The 14C age and carbon reservoir effect were calibrated with surface sedimentation rate measurements using 210Pb dating. Results showed that the core sediment deposited over 19 cal ka BP. Based on a multi-proxy analysis of TOC and IC contents, grain size and pollen assemblage data, the palaeoclimatic evolution of Pumoyum Co was reconstructed since the last glacial. Pumoyum Co was a shallow lake prior to 16.2 cal ka BP; although the glacier around the lake began to melt due to increasing temperatures, climate was still cold and dry. In the interval of 16.2–11.8 cal ka BP, the sedimentary environment fluctuated drastically and frequently. Two cold-events occurred at 14.2 and 11.8 cal ka BP, and these may correspond to the Older Dryas and the Younger Dryas events, respectively. After 11.8 cal ka BP, Pumoyun Co developed into the deep lake as it is now. The lake water temperature was relatively lower at that time because of influx of cold water from glacial meltwater entering the lake. As a result, the multi-proxy indicators showed no sign of warm conditions. Comparisons between the sedimentary record of Pumoyum Co with that of other lakes of the same age in southern Tibet indicate a warmer climate following the last deglaciation influenced the southeastern Tibetan Plateau. These results imply that the southwest Asian monsoon gradually became stronger since the deglaciation during its expansion to the inner plateau. The glacial-supplied water of the lake responded sensitively to cold-events. The entire southern Tibet region was dominantly influenced climatically by the southwest Asian monsoon during the Holocene.  相似文献   

12.
The n-alkanes are extracted from NMLC-1 core that was drilled in the Nam Co, central Tibet. They are measured by using Gas Chromatography and Mass Spectrometry (GC/MS) for componential and quantitative analyses. According to the constructed depth-age model, the component and concentration of n-alkanes, together with total organic carbon (TOC), total nitrogen (TN) and carbonate are used to elucidate palaeoenvironmental changes of Nam Co during the past 8.4 ka. The results indicate that Holocene environment performs three stages in the lake area. In the stage of 8.4-6.7 kaB.P., it was warmer while precipitation slightly increased. This stage was ended by an obvious cold/dry event. During 6.7-5.8 kaB.P., temperature increased rapidly and reached its maximum values at about 6.0 kaB.P. The environments were warm/wet optimum for the blooming of terrestrial plants and submerged aquatic plants. After that, temperature decreased continuously and showed the lowest values at about 3.0 kaB.P. From 2.9 kaB.P, to the present, temperature rose again but alternated with cold and warm. The lake area tended to be dry after 1.4 kaB.P. During 600-400 aB.P., the environmental feature was the reflection of "Little Ice Age".  相似文献   

13.
 对取自青藏高原中部色林错深水区的SL-1 孔开展年代学和粒度参数研究,以此重建了该湖5.33 ka BP 以来的水位变化.结果表明,5.33~4.25 ka BP 是一期较为稳定的高湖面期,湖面波动较小,始终维持在高湖面,后期(4.30~4.25 ka BP)湖面开始下降;4.25~2.20 ka BP,风力加强,湖面较上一期有所降低,属湖面降低期,风力作用的影响增加;2.20~1.90 ka BP,稳定的低湖面期;1.90 ka BP 至今,高湖面期.但有几期短暂而快速的湖面降低,湖面降低的持续时间一般为20~50 a,具有约0.10 ka和0.20 ka 的周期性,约0.20 ka 的准周期基本贯穿了色林错自5.33 ka BP 以来的湖面变化.这种周期在青藏高原冰芯氧同位素恢复的温度序列中也存在,说明在百年尺度上,温度对色林错的湖面变化有一定影响.  相似文献   

14.
Lake level and area variations are sensitive to regional climate changes and can be used to indirectly estimate water balances of lakes. In this study, 10 of the largest lakes in China, ~1000 km2 or larger, are examined to determine changes in lake level and area derived respectively from ICESat and Landsat data recorded between 2003 and 2009. The time series of lake level and area of Selin Co, Nam Co, and Qinghai Lake in the Tibetan Plateau (TP) and Xingkai Lake in northeastern China exhibit an increasing trend, with Selin Co showing the fastest rise in lake level (0.69 m/a), area (32.59 km2/a), and volume (1.25 km3/a) among the 10 examined lakes. Bosten and Hulun lakes in the arid and semiarid region of northern China show a decline in both lake level and area, with Bosten Lake showing the largest decrease in lake level (?0.43 m/a) and Hulun Lake showing the largest area shrinkage (?35.56 km2/a). However, Dongting, Poyang, Taihu, and Hongze lakes in the mid-lower reaches of the Yangtze River basin present seasonal variability without any apparent tendencies. The lake level and area show strong correlations for Selin Co, Nam Co, Qinghai, Poyang, Hulun, and Bosten lakes (R 2 >0.80) and for Taihu, Hongze, and Xingkai lakes (~0.70) and weak correlation for East Dongting Lake (0.37). The lake level changes and water volume changes are in very good agreement for all lakes (R 2 > 0.98). Water balances of the 10 lakes are derived on the basis of both lake level and area changes, with Selin Co, Nam Co, Qinghai, and Xingkai lakes showing positive water budgets of 9.08, 4.07, 2.88, and 1.09 km3, respectively. Bosten and Hulun lakes show negative budgets of ?3.01 and ?4.73 km3, respectively, and the four lakes along the Yangtze River show no obvious variations. Possible explanations for the lake level and area changes in these four lakes are also discussed. This study suggests that satellite remote sensing could serve as a fast and effective tool for estimating lake water balance.  相似文献   

15.
Yao  TanDong  Li  ZhiGuo  Yang  Wei  Guo  XueJun  Zhu  LiPing  Kang  ShiChang  Wu  YanHong  Yu  WuSheng 《科学通报(英文版)》2010,55(20):2072-2078
Glaciers in the Yarlung Zangbo River witness severe glacial retreat nowadays, which gives important influence on lake processes in the region. We have studied glacial distribution, glacial mass balance and found large deficit in glacial mass and its impact in the region. Our study also integrated the variation in glacial-fed lakes of the Nam Co and Ranwu Lake, and presented an initial assessment of the impact of glacial mass balance on lakes. The study has shown a significant contribution of glacial melting to recent lake expansion and lake level rising.  相似文献   

16.
基于Landsat遥感影像,采用目视解译的方法提取了青藏高原内部那曲地区冰湖和冰川1990、2000、2010及2020年4期边界数据,并分析近30年来该地区冰湖变化的特征与原因.结果表明:那曲地区现有冰湖255个,总面积(27.829±4.62) km2,冰湖主要集中在东南部,其次是西南部;1990—2020年,研究区新增冰湖72个,面积增长6.14 km2;冰湖扩张趋势明显,具体表现为低海拔地区(≤4 700 m)原有冰湖快速扩张,较高海拔地区(>5 100~5 700 m)新增冰湖集中出现;气温与降水是冰湖变化的关键因素,由于降水与气温分布及变化存在时空差异,冰湖变化呈现“南快北慢,逐期加快”的特征;冰湖与冰川的位置关系也会影响冰湖变化,离冰川位置越近,对冰湖发育越有利,同时与冰湖接触的冰川退缩速率相较于其余冰川有更大的退缩速率,但冰川与冰湖面积变化速率并无明显相关性.   相似文献   

17.
During the years 2006–2009,lakes in the Qinghai-Tibetan Plateau(QTP)were investigated using satellite remote sensing strategies.We report the results of this investigation as well as follow-up research and expanded work.For the investigation,we mainly focused on lakes whose areas are more than 1 km2.The remote sensing data that we used included 408 scenes of CBERS CCD images and 5 scenes of Landsat ETM?images in Qinghai Province and Tibet Autonomous Region.All these data were acquired around years 2005–2006.Besides remote sensing images,we also collected 1,259 topographic maps.Numbers and areas of lakes were analyzed statistically,which were then compared with those coming from the first lake investigation(implemented between the1960s and 1980s).According to our investigation,up to and around year 2005–2006,the total number of lakes in the QTP was 1,055(222 in Qinghai and 833 in Tibet),accounting for more than 30%of that of China.Thirty newborn lakes with area[1 km2were found,and 5 dead lakes with initial area[1 km2were also found.Among those 13 big lakes([500 km2),Yamzhog Yumco had seriously shrunk,and it has continued to shrink in recent years;Qinghai Lake had shrunk during the period,but some new researches indicated that it has been expanding since the year 2004;Siling Co,Nam Co,and Chibuzhang Co had expanded in the period.We divided the newborn lakes into six categories according to their forming reasons,including river expansion,wetland conversion,etc.The changes of natural conditions led to the death of four lakes,and human exploitation was the main reason for the death of Dalianhai Lake in Qinghai.We picked out three regions which were sensitive to the change of climate and ecological environment:Nagqu Region,Kekexili Region,and the source area of the Yellow River(SAYR).Lakes in both Nagqu and Kekexili have been expanded;meanwhile,most lakes in the SAYR have obviously been shrunk.These regional patterns of lake changes were highly related to variations of temperature,glacier,precipitation,and evaporation.Our investigation and analysis will provide references for researches related to lake changes in the QTP and the response to climate fluctuations.  相似文献   

18.
全球气候的变暖致使冰湖溃决灾害频繁发生,严重威胁高原地区人民生命财产安全,随之对于冰湖溃决的研究也愈发深入,冰湖库容量作为冰湖研究基础参数,对冰湖危险性评价、冰湖溃决洪峰流量以及模拟洪水演进具有不可代替的作用。计算冰湖库容的方法主要有实地测量和冰碛湖库容计算公式,由于冰碛湖多位于高山极高山地区,对每个冰湖进行实地测量难以实现,传统冰湖库容的计算方法是基于大量冰湖参数与冰湖库容的统计关系,建立冰碛湖库容经验公式,虽然其拟合优度相对较高,但其相关性只能衡量冰碛湖面积和冰碛湖库容在统计规律上的一致性,对于精确计算冰碛湖库容仍有难以完成。本文通过文献资料整理、结合实地考察对湖盆形态模拟分析,将典型冰碛湖湖盆分为三段,通过模拟建立数学模型,以冰湖面积为约束条件,抽象成数学中的曲面立体模型,分别计算其形态体积,由此推算出计算冰湖体积的表达式V=0.0717w2l (w-冰碛湖湖宽;l-冰碛湖整体长度),并利用该模型验证了公式的有效精确性,为我国喜马拉雅山地区冰碛湖库容计算提供理论参考。  相似文献   

19.
Widespread lakes on the Tibetan Plateau (TP) are valuable archives for investigating climate and environment changes, which could provide essential information on the mechanisms of past climate changes on the TP and their interaction with the global climate systems. However, there is a lack of in-depth investigation of modern limnological processes in the Tibetan lakes, which hampers the understanding of paleolimnological records and lake ecosystem succession. In this study, we performed continuous temperature monitoring at two lakes, Bangong Co, a freshwater lake in the western TP, and Dagze Co, a brackish lake in the central TP, in order to characterize the patterns of seasonal temperature variability, stratification, and mixing. Temperature data for an entire hydrological year demonstrate that Bangong Co is a dimictic lake and that Dagze Co is a meromictic lake. The higher salinity in the deep water at Dagze Co prevents the lake from overturning completely, and this finding is supported by simulations using a physical limnological model Lake Analyzer. Continuous lake water temperature monitoring provides fundamental data for classifying Tibetan lakes, as well as the hydrological basis for understanding their pa- leolimnological records and ecosystem succession.  相似文献   

20.
以青藏高原中西部湖泊达则错和阿翁错为研究对象,通过分析湖泊沉积物岩芯中GDGTs、长链不饱和烯酮与叶蜡化合物单体氢同位素等生物分子标志物获得过去2000 a以来青藏高原中西部定量的温度与降水同位素记录,以期探讨晚全新世以来不同时段青藏高原气候变化区域特征,并揭示过去2000 a季风与西风对青藏高原影响范围的变化.结果表明:(1)青藏高原气候变化存在强烈的区域性特征,两个湖泊均存在中世纪暖期(MWP),但是暖期持续的时间有所不同,高原西部(阿翁错) MWP持续时间明显长于高原中部(达则错);达则错有明显的小冰期(LIA)降温,阿翁错没有发现明显的LIA,可能受样品分辨率低的影响;过去200 a达则错温度有缓慢降低趋势,可能是冰融水补给湖泊温度变化滞后于气候变化的表现.(2)过去2000 a印度夏季风在青藏高原的最北界线可能发生了北移,在距今1000~2000 a,夏季风边界线位于阿翁错以北、达则错以南;但在过去1000 a印度季风边界线移动到阿翁错和达则错以北.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号