首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
H S Shpetner  R B Vallee 《Nature》1992,355(6362):733-735
Dynamin was initially identified in calf brain tissue as a protein of relative molecular mass 100,000 which induced nucleotide-sensitive bundling of microtubules. Purified dynamin showed only trace ATPase activity. But in combination with an activating factor removed during the purification, it exhibited microtubule-activated ATPase activity and dynamin-induced bundles showed evidence of ATP-dependent force production. Dynamin is the product of the Drosophila gene shibire, which has been implicated in synaptic vesicle recycling and, more generally, in the budding of endocytic vesicles from the plasma membrane. Dynamin also shows extensive homology with proteins that participate in vacuolar protein sorting and spindle pole-body separation in yeast, and in interferon-induced viral resistance in mammals. All members of this family contain consensus sequence elements consistent with GTP binding near their amino termini, although none has been shown to have GTPase activity. We report here that dynamin is a specific GTPase which can be stimulated to very high levels of activity by microtubules.  相似文献   

2.
Dynamin was discovered in bovine brain tissue as a nucleotide-sensitive microtubule-binding protein of relative molecular mass 100,000. It was found to cross-link microtubules into highly ordered bundles, and appeared to have a role in intermicrotubule sliding in vitro. Cloning and sequencing of rat brain dynamin complementary DNA identified an N-terminal region of about 300 amino acids which contained the three consensus elements characteristic of GTP-binding proteins. Extensive homology was found between this domain and the mammalian Mx proteins which are involved in interferon-induced viral resistance, and with the product of the VPS1 locus in Saccharomyces cerevisiae, which has been implicated both in membrane protein sorting, and in meiotic spindle pole separation. Dynamin-containing microtubule bundles were not observed in an immunofluorescence study of cultured mammalian cells, but a role for a GTP-requiring protein in intermicrotubule sliding during mitosis in plants has been reported. We report here that Drosophila melanogaster contains multiple tissue-specific and developmentally-regulated forms of dynamin, which are products of the shibire locus previously implicated in endocytic protein sorting.  相似文献   

3.
Impairment of dynamin's GAP domain stimulates receptor-mediated endocytosis   总被引:26,自引:0,他引:26  
Sever S  Muhlberg AB  Schmid SL 《Nature》1999,398(6727):481-486
Dynamin is a GTP-hydrolysing protein that is an essential participant in clathrin-mediated endocytosis by cells. It self-assembles into 'collars' in vitro which also formin vivo at the necks of invaginated coated pits. This self-assembly stimulates dynamin's GTPase activity and it has been proposed that dynamin hydrolyses GTP in order to generate the force needed to sever vesicles from the plasma membrane. A mechanism is now described in which self-assembly of dynamin is coordinated by a domain of dynamin with a GTPase-activating function. Unexpectedly, when dynamin mutants defective in self-assembly-stimulated GTPase activity are overexpressed, receptor-mediated endocytosis is accelerated. The results indicate that dynamin, like other members of the GTPase superfamily, functions as a molecular regulator in receptor-mediated endocytosis, rather than as a force-generating GTPase.  相似文献   

4.
Marks B  Stowell MH  Vallis Y  Mills IG  Gibson A  Hopkins CR  McMahon HT 《Nature》2001,410(6825):231-235
Dynamin is a large GTPase with a relative molecular mass of 96,000 (Mr 96K) that is involved in clathrin-mediated endocytosis and other vesicular trafficking processes. Although its function is apparently essential for scission of newly formed vesicles from the plasma membrane, the nature of dynamin's role in the scission process is still unclear. It has been proposed that dynamin is a regulator (similar to classical G proteins) of downstream effectors. Here we report the analysis of several point mutants of dynamin's GTPase effector (GED) and GTPase domains. We show that oligomerization and GTP binding alone, by dynamin, are not sufficient for endocytosis in vivo. Rather, efficient GTP hydrolysis and an associated conformational change are also required. These data argue that dynamin has a mechanochemical function in vesicle scission.  相似文献   

5.
Roux A  Uyhazi K  Frost A  De Camilli P 《Nature》2006,441(7092):528-531
Dynamin, a crucial factor in endocytosis, is a member of a family of GTPases that participates in membrane fission. It was initially proposed to act as a machine that constricts and cuts the neck of nascent vesicles in a GTP-hydrolysis-dependent reaction, but subsequent studies suggested alternative models. Here we monitored the effect of nucleotides on dynamin-coated lipid tubules in real time. Addition of GTP, but not of GDP or GTP-gammaS, resulted in twisting of the tubules and supercoiling, suggesting a rotatory movement of the helix turns relative to each other during GTP hydrolysis. Rotation was confirmed by the movement of beads attached to the tubules. Twisting activity produced a longitudinal tension that was released by tubule breakage when both ends of the tubule were anchored. Fission also occurred when dynamin and GTP were added to lipid tubules that had been generated from liposomes by the motor activity of kinesin on microtubules. No fission events were observed in the absence of longitudinal tension. These findings demonstrate a mechanoenzyme activity of dynamin in endocytosis, but also imply that constriction is not sufficient for fission. At the short necks of endocytic vesicles, other factors leading to tension may cooperate with the constricting activity of dynamin to induce fission.  相似文献   

6.
Endophilin I is a presynaptic protein of unknown function that binds to dynamin, a GTPase that is implicated in endocytosis and recycling of synaptic vesicles. Here we show that endophilin I is essential for the formation of synaptic-like microvesicles (SLMVs) from the plasma membrane. Endophilin I exhibits lysophosphatidic acid acyl transferase (LPAAT) activity, and endophilin-I-mediated SLMV formation requires the transfer of the unsaturated fatty acid arachidonate to lysophosphatidic acid, converting it to phosphatidic acid. A deletion mutant lacking the SH3 domain through which endophilin I interacts with dynamin still exhibits LPAAT activity but no longer mediates SLMV formation. These results indicate that endophilin I may induce negative membrane curvature by converting an inverted-cone-shaped lipid to a cone-shaped lipid in the cytoplasmic leaflet of the bilayer. We propose that, through this action, endophilin I works with dynamin to mediate synaptic vesicle invagination from the plasma membrane and fission.  相似文献   

7.
Isolation of a gene from Drosophila by complementation in yeast   总被引:21,自引:0,他引:21  
S Henikoff  K Tatchell  B D Hall  K A Nasmyth 《Nature》1981,289(5793):33-37
Transformation of mutant yeast cells by cloned genomic DNA from a higher eukaryote has made it possible to isolate a Drosophila DNA sequence that complements a yeast adenine-8-mutation. A 0.8-kilobase poly(A)-containing RNA is transcribed from the cloned Drosophila segment in transformed yeast cells and can account for functional expression of the gene.  相似文献   

8.
Suppression of a myosin defect by a kinesin-related gene.   总被引:18,自引:0,他引:18  
S H Lillie  S S Brown 《Nature》1992,356(6367):358-361
Motor proteins in cells include myosin, which is actin-based, and kinesin, dynein and dynamin, which are microtubule-based. Several proteins have recently been identified that have amino-acid sequences with similarity to the motor domains of either myosin or kinesin, but are otherwise dissimilar. This has led to the suggestion that these may all be motor proteins, but that they are specialized for moving different cargos. Genetic analysis can address the question of the different functions of these new proteins. Studies of a temperature-sensitive mutation (myo2-66) in a gene of the myosin superfamily (MYO2) have implicated the Myo2 protein (Myo2p) in the process of polarized secretion in yeast (Saccharomyces cerevisiae). To understand more about the role of Myo2p, we have looked for 'multicopy suppressors' (heterologous genes that, when overexpressed, can correct the temperature sensitivity of the myo2-66 mutant). Here we report the identification of such a suppressor (SMY1) that (surprisingly) encodes a predicted polypeptide sharing sequence similarity with the motor portion of proteins in the kinesin superfamily.  相似文献   

9.
Faelber K  Posor Y  Gao S  Held M  Roske Y  Schulze D  Haucke V  Noé F  Daumke O 《Nature》2011,477(7366):556-560
Dynamin is a mechanochemical GTPase that oligomerizes around the neck of clathrin-coated pits and catalyses vesicle scission in a GTP-hydrolysis-dependent manner. The molecular details of oligomerization and the mechanism of the mechanochemical coupling are currently unknown. Here we present the crystal structure of human dynamin 1 in the nucleotide-free state with a four-domain architecture comprising the GTPase domain, the bundle signalling element, the stalk and the pleckstrin homology domain. Dynamin 1 oligomerized in the crystals via the stalks, which assemble in a criss-cross fashion. The stalks further interact via conserved surfaces with the pleckstrin homology domain and the bundle signalling element of the neighbouring dynamin molecule. This intricate domain interaction rationalizes a number of disease-related mutations in dynamin 2 and suggests a structural model for the mechanochemical coupling that reconciles previous models of dynamin function.  相似文献   

10.
The complete DNA sequence of yeast chromosome III.   总被引:98,自引:0,他引:98  
The entire DNA sequence of chromosome III of the yeast Saccharomyces cerevisiae has been determined. This is the first complete sequence analysis of an entire chromosome from any organism. The 315-kilobase sequence reveals 182 open reading frames for proteins longer than 100 amino acids, of which 37 correspond to known genes and 29 more show some similarity to sequences in databases. Of 55 new open reading frames analysed by gene disruption, three are essential genes; of 42 non-essential genes that were tested, 14 show some discernible effect on phenotype and the remaining 28 have no overt function.  相似文献   

11.
A dynamin-like protein encoded by the yeast sporulation gene SPO15.   总被引:17,自引:0,他引:17  
E Yeh  R Driscoll  M Coltrera  A Olins  K Bloom 《Nature》1991,349(6311):713-715
The tightly centromere-linked gene SPO15 is essential for meiotic cell division in the yeast Saccharomyces cerevisiae. Diploid cells without the intact SPO15 gene product are able to complete premeiotic DNA synthesis and genetic recombination, but are unable to traverse the division cycles. Electron microscopy of blocked cells reveals a duplicated but unseparated spindle-pole body. Thus cells are unable to form a bipolar spindle. Sequence analysis of SPO15 DNA reveals an open reading frame that predicts a protein of 704 amino acids. This protein is identical to VPS1, a gene involved in vacuolar protein sorting in yeast which has significant sequence homology (45% overall, 66% over 300 amino acids) to the microtubule bundling-protein, dynamin. The SPO15 gene product expressed in Escherichia coli can be affinity-purified with microtubules. SPO15 encodes a protein that is likely to be involved in a microtubule-dependent process required for the timely separation of spindle-pole bodies in meiosis.  相似文献   

12.
Low HH  Löwe J 《Nature》2006,444(7120):766-769
Dynamins form a superfamily of large mechano-chemical GTPases that includes the classical dynamins and dynamin-like proteins (DLPs). They are found throughout the Eukarya, functioning in core cellular processes such as endocytosis and organelle division. Many bacteria are predicted by sequence to possess large GTPases with the same multidomain architecture that is found in DLPs. Mechanistic dissection of dynamin family members has been impeded by a lack of high-resolution structural data currently restricted to the GTPase and pleckstrin homology domains, and the dynamin-related human guanylate-binding protein. Here we present the crystal structure of a cyanobacterial DLP in both nucleotide-free and GDP-associated conformation. The bacterial DLP shows dynamin-like qualities, such as helical self-assembly and tubulation of a lipid bilayer. In vivo, it localizes to the membrane in a manner reminiscent of FZL, a chloroplast-specific dynamin-related protein with which it shares sequence similarity. Our results provide structural and mechanistic insight that may be relevant across the dynamin superfamily. Concurrently, we show compelling similarity between a cyanobacterial and chloroplast DLP that, given the endosymbiotic ancestry of chloroplasts, questions the evolutionary origins of dynamins.  相似文献   

13.
Ford MG  Jenni S  Nunnari J 《Nature》2011,477(7366):561-566
Dynamin-related proteins (DRPs) are multi-domain GTPases that function via oligomerization and GTP-dependent conformational changes to play central roles in regulating membrane structure across phylogenetic kingdoms. How DRPs harness self-assembly and GTP-dependent conformational changes to remodel membranes is not understood. Here we present the crystal structure of an assembly-deficient mammalian endocytic DRP, dynamin 1, lacking the proline-rich domain, in its nucleotide-free state. The dynamin 1 monomer is an extended structure with the GTPase domain and bundle signalling element positioned on top of a long helical stalk with the pleckstrin homology domain flexibly attached on its opposing end. Dynamin 1 dimer and higher order dimer multimers form via interfaces located in the stalk. Analysis of these interfaces provides insight into DRP family member specificity and regulation and provides a framework for understanding the biogenesis of higher order DRP structures and the mechanism of DRP-mediated membrane scission events.  相似文献   

14.
15.
16.
R J J?ger  M Anvret  K Hall  G Scherer 《Nature》1990,348(6300):452-454
The primary decision about male or female sexual development of the human embryo depends on the presence of the Y chromosome, more specifically on a gene on the Y chromosome encoding a testis-determining factor, TDF. The human sex-determining region has been delimited to a 35-kilobase interval near the Y pseudoautosomal boundary. In this region there is a candidate gene for TDF, termed SRY, which is conserved and specific to the Y chromosome in all mammals tested. The corresponding gene from the mouse Y chromosome is deleted in a line of XY female mutant mice, and is expressed at the expected stage during male gonadal development. We have now identified a mutation in SRY in one out of 12 sex-inversed XY females with gonadal dysgenesis who do not lack large segments of the short arm of the Y chromosome. The four-nucleotide deletion occurs in a sequence of SRY encoding a conserved DNA-binding motif and results in a frame shift presumably leading to a non-functional protein. The mutation occurred de novo, because the father of the sporadic XY female that bears it has the normal sequence at the corresponding position. These results provide strong evidence for SRY being TDF.  相似文献   

17.
18.
Novel potential mitotic motor protein encoded by the fission yeast cut7+ gene   总被引:45,自引:0,他引:45  
I Hagan  M Yanagida 《Nature》1990,347(6293):563-566
The structure equivalent to higher eukaryotic centrosomes in fission yeast, the nuclear membrane-bound spindle pole body, is inactive during interphase. On transition from G2 to M phase of the cell cycle, the spindle pole body duplicates; the daughter pole bodies seed microtubules which interdigitate to form a short spindle that elongates to span the nucleus at metaphase. We have identified two loci which, when mutated, block spindle formation. The predicted product of one of these genes, cut7+, contains an amino-terminal domain similar to the kinesin heavy chain head domain, indicating that the cut7+ product could be a spindle motor. The cut7+ gene resembles the Aspergillus nidulans putative spindle motor gene bimC, both in terms of its organization with a homologous amino-terminal head and no obvious heptad repeats and in the morphology of the mutant phenotype. But we find no similarity between the carboxy termini of these genes, suggested that either the cut7+ gene represents a new class of kinesin genes and that fission yeast may in addition contain a bimC homologue, or that the carboxy termini of these mitotic kinesins are not evolutionarily conserved and that the cut7+ gene belongs to a subgroup of bimC-related kinesins.  相似文献   

19.
20.
Gallop JL  Butler PJ  McMahon HT 《Nature》2005,438(7068):675-678
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号