首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
对于正整数n=2tpa11pa22…pakk,这里pi是奇素数,mi是正整数,i=1,2,…,k,2p1p2…pk,t是非负整数.设d(n),φ(n),σ(n)分别表示n的约数函数,Eu ler函数和约数和函数.给出了:n=2和3时,方程xd(n)+yφ(n)=zσ(n)正整数解的一般公式;并证明了ai(i=1,2,…,k)中至少有两个为奇数或存在i及奇素数p,使pi≡1(modp)且ai≡-1(modp)两种情形时,方程xd(n)+yφ(n)=zσ(n)没有正整数解.  相似文献   

2.
对于任意正整数a,令σ(a)表示a的所有因子之和.设n是一个固定的正整数,称正整数x是n-完全数,如果它满足σ(x)+σ(nx)=2(n+1)x.运用σ(a)的一些性质讨论了2~r-完全数的存在性,其中r是固定的正整数,证明了x是2~r-完全数当且仅当x=2~s(2~(r+s)+2~s-1),其中s是正整数,2~(r+s)+2~s-1是一个奇素数.  相似文献   

3.
对于正整数n和k,设F(n,k)是闭区间[nk,(n 1)k]内所有正整数的集合,又设a1,a2,…,ak 1.是F(n,k)中适合a1<a2<…<ak 1的k 1个数.证明了:当且仅当ai=nk-i 1(n 1)i-1(i=1,2,…,k 1)时,a1,a2,…,ak 1构成几何数列.  相似文献   

4.
设n是正整数,p=4n+1是素数.证明了:存在n个正整数ki(i=1,2,…,n)适合ki≤2n以及ni=1cos(2ki-1)/p=(1+p)/4.  相似文献   

5.
设n是正整数,用σ(n)表示n的所有正因数的和。对于给定的正整数a,如果不存在正整数b适合σ(a)=σ(b)=a+b,则称a是孤立数。文章运用初等数论的方法证明了pr都是孤立数。这里p为奇素数,满足p>2r~(1+ε),0<ε≤1,ε是任意实数,r是正整数,满足r>((1+ε)/ε)~1/ε  相似文献   

6.
对于正整数a,设σ(a)是a的所有正因数的和。运用初等数论的方法证明了方程σ(x3)=y2没有正整数解(x,y)可使x=2np,其中n是正整数,p与23n+1-1=q都是奇素数。这一结果推广和改进了文献[4]中的结论。  相似文献   

7.
研究了矩阵特征的控制不等式 ,获得了以下两个主要结论 :(1 )对于任意的 n阶复阵矩阵 A和正整数 k、r,恒有以下特征的控制不等式成立 :(α1 ,α2 …αN) (β1 ,β2 ,…βN) (N =Ckn)  其中   αj=|∏kh=1 λh(j) (A) |2 r,βj=(∏kh=1 λih(j) (AA* ) ) r(j=1 ,2…N)(2 )若 Ai(i=1 ,2 ,…m)是 m个 n阶四元数矩阵 ,r是任意正整数 ,则以下奇异值控制不等式成立 :((σ1 (∏mi=1Ai) ) r,(σ2 (∏mi=1Ai) ) r,…… (σn(∏mi=1Ai) ) r (∏mi=1σ1 (Αri) ,   ∏mi=1 σ2 (Ari)…… ∏mi=1 σn(Ari) )  相似文献   

8.
设p为质数,α为正整数,对于素数方幂pα,令ρ(pα)=pα-pα-1+pα-2-…+(-1)α.给出方程kρ(n)=n+d(k=3,4)的全部正整数解,其中,n只有2个不同素因子数,1≤d相似文献   

9.
对任意正整数n,素因数和函数F(n)为F(1)=0,当n1且n的标准分解式为n=p1a1p2a2···prar时,F(n)=α1p1+α2·p2+···+αr·pr.设p(n)表示n的最小素因子.本文研究了可加函数(F(n)-p)2的值分布,并用初等方法得到了一个较强的渐近公式.  相似文献   

10.
讨论了非线性多时滞中立型差分方程    Δ(x(n) - p(n)x(n-τ) ) +q(n) ∏mi =1(x(n -σi) ) αisgnx(n-σi) =0的振动性 .其中 :p(n) ≥ 0 ,q(n)≥ 0且不恒等于 0 ;τ ,σi是非负整数 ,i=1,2 ,… ,m ;αi >0 ,∑mi=1αi=1;Δ是前差分算子 ,Δx(n) =x(n+1) -x(n) .采用离散的Riccati变换和某些函数变换 ,利用反证法 ,得出了此方程所有解的若干振动准则 .  相似文献   

11.
设a,b,D,k是适合gad(a,b)=gcd(D,k)=1,a2-Db2=k的正整数;又设α=a+b D,β=a-bD.本文证明了当D是非平方数且k含有适合p≡±3(mod8)的素因数p时,方程α2n+β2n=2x2没有正整数解(x,n).  相似文献   

12.
讨论了非线性多时滞中立型差分方程    Δ(x(n) - p(n)x(n-τ) ) +q(n) ∏mi =1(x(n -σi) ) αisgnx(n-σi) =0的非振动性 .其中 :p(n) ≥ 0 ,q(n)≥ 0且不恒等于 0 ;τ ,σi 是非负整数 ,i=1,2 ,… ,m ;αi >0 ,∑mi =1αi =1;Δ是前差分算子 ,Δx(n) =x(n+1) -x(n) .利用序列及映射的构造得出了方程最终正解的存在条件 ,并且引用以指数形式趋于 0的定义讨论了非振动解的渐近性态 .  相似文献   

13.
对于正整数a,设φ(a)和S(a)分别是a的Euler函数和Smarandache函数,k是给定的正整数。本研究运用初等数学方法给出了方程φ(n)=S(nk)有适合n>1的正整数解n的充要条件。由此推知:如果k=[(pα-1-1)/α],其中p为奇素数,α是大于1的正整数,[(pα-1-1)/α]是(pα-1-1)/α的整数部分,则该方程有正整数解n=pαm适合n>1,其中m∈{1,2}。  相似文献   

14.
用归纳法证明了两个极限命题。(1)设m>1,pi(x)(i=1,2,…,m)是[1, ∞)上的连续正函数,在满足一定条件下成立li mx→ ∞∫1xtm-1p1(t)p2(t)…pm(t)dtxmp1(x)p2(x)…pm(x)=α2α3…αm α1α3α…1αα2m… αm… α1α2…αm-1(2)设pjn,an(j=1,2,…,m;n=1,2,…;m>1)均为正数,在满足一定条件下成立li mn→∞∑nk=1akm-1p1kp2k…pmkanmp1np2n…pmn=α2α3…αm α1α3α…1αα2m… αm… α1α2…αm-1  相似文献   

15.
设σ(n)是正整数n的所有正因子之和,讨论数论函数方程σ(x~3)=y~2一类特殊解的存在性,证明了方程σ(x~3)=y~2不存在满足x=5p~r的正整数解(x,y),其中p为不等于5的奇素数,r为大于1的正整数.  相似文献   

16.
研究和推广"杜西结论",设α∈φn={(a1,a2,…,an)|ai∈N,i=1,2,…,n},定义杜西变换:D(α)=(|a1-a2|,|a2-a3|,…,|an-a1|),利用离散动力系统的分析方法,研究更一般的问题,得出结论:n(n=2k,(k=1,2,…))个自然数形成一个环形,再进行相邻两数大数减小数,则在有限步内n个数必都变为零,即对任意α∈φn,当n=2k,(k=1,2,…)时,存在m∈N,有Dm(α)=θ,并得出几个相关的结论.  相似文献   

17.
设G为一个有限π-可分群,其中π为一个素数集合(其中2∈π)。在这篇文章中,我们证明了:设χ∈Bπ′(G),χ对应的表示为T且T是由n-维G-空间V产生的G的不可约表示,则T是单项的当且仅当V有基{v1,v2,…,vn},使得vix=αi(x)vσx(i),i=1,2,…,n,x∈G,其中x→σx为同态,而σx是{1,2,…,n}的置换,且αi(x)≠0是复数。  相似文献   

18.
设φ(n)和S(n)分别为正整数n的欧拉函数和Smarandache函数.熟知,S(n)的准确计算公式是一个尚未解决的公开问题.利用初等的方法与技巧,给出了S(pα)的准确计算公式,其中p为质数,α为正整数,从而完全解决了上述公开问题.由此得到方程φ(n)=S(nk)的正整数解(n,k)的性质,以及σ(2~αq)/S(2~αq)为正整数的几个必要条件,其中q为奇质数,σ(n)表示n的全部不同正因数的和.  相似文献   

19.
对任意正整数n,对任意自然数ri,i=1,2,…,3n+1,V(Fn,4)={v1,v2,…,v3n+1},图Fn,4(r1,r2,…,r3n+1)表示V(Fn,4)中的vi都粘接了ri条悬挂边所得到的图。讨论了图Fn,4(r1,r2,…,r3n+1)的优美性。证明了:对任意正整数n,对任意自然数,i=1,2,…,3n+1,图Fn,4(r1,r2,…,r3n+1)是交错图。  相似文献   

20.
Janous型的一类循环不等式   总被引:1,自引:0,他引:1  
本文的目的是建立一类Janous型的循环不等式 .主要结果是 :①设x∈Rn++(n 3 ) ,S = ni=1xi, ni=1xixi+1…xi+k -1=nPk,(1 k n - 1) ,并且xi+n=xi(i=1,2 ,… ,n) ,则对于α k有 ni=1xαi/ (S -xi) [n/ (n - 1) ]Pα -1;②设m >1是任意的正整数 ,λk 0 (k =1,… ,m) , mk =1λk=1,则对于任意的正实数α ,β有 ni=1(xαi+1- mk =1λkxαi+k) / (S -xi+1)β 0 .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号