首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, we used the stop-action technique to experimentally investigate the material flow and microstructural evolution of alclad 2A12-T4 aluminum alloy during refill friction stir spot welding. There are two material flow components, i.e., the inward- or outward-directed spiral flow on the horizontal plane and the upward- or downward-directed flow on the vertical plane. In the plunge stage, the flow of plasticized metal into the cavity is similar to that of a stack, whereby the upper layer is pushed upward by the lower layer. In the refill stage, this is process reversed. As such, there is no obvious vertical plasticized metal flow between adjacent layers. Welding leads to the coarsening of S (Al2CuMg) in the thermo-mechanically affected zone and the diminishing of S in the stir zone. Continuous dynamic recrystallization results in the formation of fine equiaxed grains in the stir zone, but this process becomes difficult in the thermo-mechanically affected zone due to the lower deformation rate and the pinning action of S precipitates on the dislocations and sub-grain boundaries, which leads to a high fraction of low-angle grain boundaries in this zone.  相似文献   

2.
针对2mm的6082-T6铝合金薄板进行回填式搅拌摩擦点焊,研究搅拌套的旋转速度及下扎深度对力学性能的影响规律,并对接头的横截面及断口形貌进行观察和分析.结果表明:当采用合适的焊接参数时,回填式搅拌摩擦搭接点焊的接头成形美观.点焊接头剪切强度随着搅拌头转速和下扎深度的增加均呈先增大后减小的趋势,剪切断口的断裂形式为韧性断裂.  相似文献   

3.
Heat flux characteristics are critical to good quality welding obtained in the important engineering alloy Al2024-T3 by the friction stir welding (FSW) process. In the present study, thermocouples in three different configurations were affixed on the welding samples to measure the temperatures: in the first configuration, four thermocouples were placed at equivalent positions along one side of the welding direction; the second configuration involved two equivalent thermocouple locations on either side of the welding path; while the third configuration had all the thermocouples on one side of the layout but with unequal gaps from the welding line. A three-dimensional, non-linear ANSYS computational model, based on an approach applied to Al2024-T3 for the first time, was used to simulate the welding temperature profiles obtained experimentally. The experimental thermal profiles on the whole were found to be in agreement with those calculated by the ANSYS model. The broad agreement between the two kinds of profiles validates the basis for derivation of the simulation model and provides an approach for the FSW simulation in Al2024-T3 and is potentially more useful than models derived previously.  相似文献   

4.
为了提高飞机蒙皮连接强度,采用回填式搅拌摩擦点焊(RFSSW)技术对飞机蒙皮材料2524-T3进行了焊接试验。采用体式显微镜和金相显微镜对接头组织进行观察,通过拉剪试验和拉脱试验对接头进行力学性能测试,对断口进行扫描分析。结果表明:接头成形良好,无明显缺陷,RFSSW接头在热机耦合作用下,焊点形成4个不同显微组织区域;RFSSW接头力学性能普遍高于铆接,焊接接头剪切性能达到7.233 kN,较铆接提高113.4%,焊接接头拉脱性能达到3.172 kN,较铆接提高6.16%;接头断裂呈现为焊核剥离断裂和塞型断裂两种模式,当接头下扎深度较浅,焊点内部搅拌不足时产生焊核剥离断裂,随着套筒下扎深度的增加,塞型断裂由上板塞型断裂转变为下板塞型断裂,拉剪和拉脱焊核剥离断裂均为韧性断裂,塞型断裂均为混合型断裂。通过对回填式搅拌摩擦点焊接头力学性能的分析,为搅拌摩擦点焊代替铆接在航空结构件上的应用提供理论和技术基础。  相似文献   

5.
To better understand the stress-corrosion behavior of friction stir welding(FSW), the effects of the microstructure on the stress-corrosion behavior of the FSW in a 2198-T34 aluminum alloy were investigated. The experimental results show that the low-angle grain boundary(LABs) of the stir zone(SZ) of FSW is significantly less than that of heated affected zone(HAZ), thermo-mechanically affected zone(TMAZ), and parent materials(PM), but the grain boundary precipitates(GBPs) T1(Al_2CuLi) were less, which has a slight effect on the stress corrosion. The dislocation density in SZ was greater than that in other regions. The residual stress in SZ was +67 MPa, which is greater than that in the TMAZ. The residual stress in the HAZ and PM is -8 MPa and-32 MPa, respectively, and both compressive stresses. The corrosion potential in SZ is obviously less than that in other regions. However, micro-cracks were formed in the SZ at low strain rate, which indicates that the grain boundary characters and GBPs have no significant effect on the crack initiation in the stress-corrosion process of the AA2198-T34.Nevertheless, the residual tensile stress has significant effect on the crack initiation during the stress-corrosion process.  相似文献   

6.
6061-T6铝合金薄板的搅拌摩擦焊接   总被引:2,自引:0,他引:2  
采用搅拌摩擦焊(FSW)技术对1mm厚6061-T6铝合金薄板进行了对接. 研究了焊接工艺参数的范围,实验测试了焊接接头的强度、硬度和延伸率,利用金相显微镜、扫描电镜和透射电镜分析了接头的微观组织. 结果表明:对于1mm厚度6061-T6铝合金,FSW的最优工艺参数为旋转速度1800r·min-1,焊接速度1000mm·min-1;在此参数下,接头的硬度值达到母材的80%左右,抗拉强度达到母材的103%,延伸率达到母材的54%;接头的力学性能与微观结构相符.  相似文献   

7.
A liquid-nitrogen-cooling friction stir spot welding (C-FSSW) technology was developed for welding AZ31 magnesium alloy sheets. The liquid-nitrogen cooling degraded the deformability of the welded materials such that the width of interfacial cracks increased with increasing cooling time. The grain size of the stirred zone (SZ) and the heat-affected zone (HAZ) of the C-FSSW-welded joints decreased, whereas that of the thermomechanically affected zone (TMAZ) increased with increasing cooling time. The maximum tensile shear load of the C-FSSW-welded joints welded with a cooling time of 5 or 7 s was larger than that of the friction stir spot welding (FSSW)-welded joint, and the tensile shear load decreased with increasing cooling time. The microhardness of the C-FSSW-welded joints was greater than that of the FSSW-welded joint. Moreover, the microhardness of the SZ and the HAZ of the C-FSSW-welded joints increased, whereas that of the TMAZ decreased, with increasing cooling time.  相似文献   

8.
We used refill friction stir spot welding (RFSSW) to join 2-mm-thick AZ91D-H24 magnesium alloy sheets, and we investigated in detail the effect of tool plunge depth on the microstructure and fracture behavior of the joints. A sound joint surface can be obtained using plunge depths of 2.0 and 2.5 mm. Plunge depth was found to significantly affect the height of the hook, with greater plunge depths corresponding to more severe upward bending of the hook, which compromised the tensile-shear properties of the joints. The hardness reached a minimum at the thermo-mechanically affected zone due to the precipitation phases of this zone as it dissolved into the α-matrix during the welding process. The fracture modes of RFSSW joints can be divided into three types: shear fracture, plug fracture, and shear–plug fracture. Of these, the joint with a shear–plug fracture exhibited the best tensile-shear load of 6400 N.  相似文献   

9.
电机在提供动力的同时会产生大量的热量;一般采用铝合金水冷电机外壳为电机降温来保证其使用寿命。铝合金水冷电机外壳采用焊接的方式来保证其水道的密封性。与传统的熔化焊相比,搅拌摩擦焊方法以及合理的焊接工艺能够有效地减少焊接缺陷、降低热输入、提高产品的一次合格率。搅拌摩擦焊工艺过程可在此类铝合金产品中推广应用,为此类产品在后续新能源领域的发展提供坚实的基础。  相似文献   

10.
采用搅拌摩擦焊焊接厚度为2.75 mm的2519A铝合金板材。分别研究在空气和水流中冷却对焊接性能和焊缝组织的影响。实验结果表明:在旋转速度为2 700 r/min,焊接速度为60 mm/min条件下,水冷焊接得到美观并无明显缺陷的接头,提高了接头强度,抗拉强度达到340 MPa;在水冷条件下,热影响区的范围变窄,热影响区平均硬度提高,焊核区晶粒粒度比空冷条件下的更加小,硬度几乎呈直线分布;而在空冷条件下,焊核区硬度呈先上升后下降趋势,变化明显,水冷焊核区平均硬度低于空冷条件下平均硬度,这是因为空冷焊接能够提高固溶度并促进随后的时效发生。  相似文献   

11.
许多工程结构在服役过程中往往承受着复杂的多轴疲劳载荷,仅靠单轴载荷来简化复杂载荷状态的失效预测方法将不再适用。因此,准确预测复杂载荷下工程结构的多轴疲劳失效行为对提高结构安全性具有重要意义。疲劳裂纹萌生及扩展是疲劳失效行为最直观的反应,针对2A12-T4铝合金实心圆棒试件,在相同的等效von Mises应力幅值下,开展了不同应力幅比下的多轴疲劳试验。采用金相显微镜对试件表面裂纹萌生及扩展行为进行了观测,研究了不同应力幅比下试件表面裂纹形态及扩展路径,探讨了不同应力幅比下2A12-T4铝合金多轴疲劳失效行为。结果表明,对于2A12-T4铝合金,试件表面均存在多条裂纹,导致疲劳破坏的主裂纹只有1条;裂纹萌生方向接近于最大切应力幅值平面,裂纹扩展第Ⅰ阶段的长度与方向同时受到应力幅比的影响;主裂纹扩展路径主要沿着最大切应力幅值平面,最大切应力幅值是引起2A12-T4铝合金多轴疲劳失效的主要控制参量。  相似文献   

12.
Novel hybrid refill friction stir spot welding (RFSSW) assisted with ultrasonic oscillation was introduced to 5A06 aluminum alloy joints. The metallographic structure and mechanical properties of 5A06 aluminum alloy RFSSW joints formed without ultrasonic assistance and with lateral and longitudinal ultrasonic assistance were compared, and the ultrasonic-assisted RFSSW process parameters were optimized. The results show that compared with lateral ultrasonic oscillation, longitudinal ultrasonic oscillation strengthens the horizontal bonding ligament in the joint and has a stronger effect on the joint's shear strength. By contrast, lateral ultrasonic oscillation strengthens the vertical bonding ligament and is more effective in increasing the joint's tensile strength. The maximum shear strength of ultrasonic-assisted RFSSW 5A06 aluminum alloy joints is as high as 8761 N, and the maximum tensile strength is 3679 N when the joints are formed at a tool rotating speed of 2000 r/min, a welding time of 3.5 s, a penetration depth of 0.2 mm, and an axial pressure of 11 kN.  相似文献   

13.
This study compared the microstructure and mechanical characteristics of AA6061-T6 joints produced using friction stir welding(FSW), friction stir vibration welding(FSVW), and tungsten inert gas welding(TIG). FSVW is a modified version of FSW wherein the joining specimens are vibrated normal to the welding line during FSW. The results indicated that the weld region grains for FSVW and FSW were equiaxed and were smaller than the grains for TIG. In addition, the weld region grains for FSVW were finer compared with those for FSW.Results also showed that the strength, hardness, and toughness values of the joints produced by FSVW were higher than those of the other joints produced by FSW and TIG. The vibration during FSW enhanced dynamic recrystallization, which led to the development of finer grains.The weld efficiency of FSVW was approximately 81%, whereas those of FSW and TIG were approximately 74% and 67%, respectively.  相似文献   

14.
This study compared the microstructure and mechanical characteristics of AA6061-T6 joints produced using friction stir welding (FSW), friction stir vibration welding (FSVW), and tungsten inert gas welding (TIG). FSVW is a modified version of FSW wherein the joining specimens are vibrated normal to the welding line during FSW. The results indicated that the weld region grains for FSVW and FSW were equiaxed and were smaller than the grains for TIG. In addition, the weld region grains for FSVW were finer compared with those for FSW. Results also showed that the strength, hardness, and toughness values of the joints produced by FSVW were higher than those of the other joints produced by FSW and TIG. The vibration during FSW enhanced dynamic recrystallization, which led to the development of finer grains. The weld efficiency of FSVW was approximately 81%, whereas those of FSW and TIG were approximately 74% and 67%, respectively.  相似文献   

15.
对6005A—T6铝合金FSW接头、母材以及MIG焊接头进行了疲劳性能试验对比研究。结果表明,FSW接头的抗拉强度约是母材抗拉强度的82.5%;MIG焊试样的抗拉强度约是母材抗拉强度的73.4%。当循环周次N〉10^7时,FSW试样的疲劳强度值接近于母材,约为母材疲劳强度值的93%,而MIG焊试样的疲劳强度值仅为母材的67%。FSW接头热影响区的断口疲劳区形貌为准解理和韧窝的组合形貌。准解理型穿晶扩展裂纹与FSW接头热影响区中原母材枝晶结构有关,断口扩展区形貌为韧窝状形貌。  相似文献   

16.
对厚度为 6mm的 2 0 2 4铸铝合金板做了搅拌摩擦焊接工艺试验 .通过对焊接件拉伸强度测试 ,以及在光学显微镜和扫描电镜下对焊缝和基体显微组织的观察 ,发现焊缝比基体具有更细小的晶粒组织 ,粗大的θ(CuAl2 )相被破碎 ,且有害杂质相容易在晶界上析出 .试验结果表明 ,焊接速度为 30mm/min和焊接头旋转速度为 10 0 0r/min时 ,可以获得良好的焊接质量 .图 5 ,表 2 ,参 6  相似文献   

17.
采用搅拌摩擦焊技术在保护气氛下对单块TC4钛合金板材施焊,并获得良好成形。重点研究了搅拌区α+β双相微观组织演变机制及不同工艺参数对组织硬度的影响。结果表明,在经优化后的工艺参数条件下,搅拌区组织经历了α/β相变,最终形成基于β相区的α+β双态组织,搅拌头行走过后冷却析出的层片状α相沿β相区界面及内部分布,α相及β相晶粒细化明显,α/β层片间距的缩小可增强α+β复相强化效应,提高搅拌区硬度。搅拌头转速的提高增加了β相区的长大倾向,行进速度的提高降低了α相比例,并可生成针状马氏体。  相似文献   

18.
The corrosion behavior of friction-stir-welded 2A14-T6 aluminum alloy was investigated by immersion testing in immersion exfoliation corrosion (EXCO) solution. Electrochemical measurements (open circuit potential, potentiodynamic polarization curves, and electrochemical impedance spectroscopy), scanning electron microscopy, and energy dispersive spectroscopy were employed for analyzing the corrosion mechanism. The results show that, compared to the base material, the corrosion resistance of the friction-stir welds is greatly improved, and the weld nugget has the highest corrosion resistance. The pitting susceptibility originates from the edge of Al-Cu-Fe-Mn-Si phase particles as the cathode compared to the matrix due to their high self-corrosion potential. No corrosion activity is observed around the θ phase (Al2Cu) after 2 h of immersion in EXCO solution.  相似文献   

19.
通过干湿周浸加速实验方法、扫描电镜观察和电化学阻抗谱测试技术,研究了2A12铝合金的初期腐蚀规律与电化学行为. 实验结果表明,干湿周浸48h后,所有Cl~-溶液中试样都发生了明显的点蚀. 提高Cl~-含量可以促进点蚀的形成和发展,同时腐蚀产物增多. 当Cl~-含量低时,腐蚀过程主要受电荷转移电阻控制;随Cl~-含量增加,其电化学特征转变为受电荷转移电阻和Warburg阻抗扩散混合控制.  相似文献   

20.
Cold-rolled 2024-T3 sheet alloy was subjected to bobbin-tool friction stir welding (BTFSW). The microstructural characteristics and mechanical properties of the nugget zone in the as-welded state were investigated. The results show that the equiaxed grain size of BTFSW 2024-T3 alloy decreases from 7.6 to 2.8 μm as the welding speed is increased from 80 to 120 mm/min; in addition, fine grains are generated in the nugget zone and the size distribution is non-uniform. All Al2CuMg (S') precipitates dissolve into the Al matrix, whereas Mn-rich phases confirmed as T phases (Al20Cu2Mn3, Al6Mn, or Al3Mn) remain unchanged. The optimized parameters for BTFSW are verified as the rotation speed of 350 r/min and the travel speed of 100 mm/min. The variations in precipitation and dislocation play more important roles than grain size in the nugget zone with respect to influencing the mechanical properties during the BTFSW process. After the BTFSW process, the fracture mode of base material 2024-T3 alloy transforms from ductile rupture to ductile-brittle mixed fracture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号