首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
The method of producing ferronickel at low temperature(1250–1400℃)has been applied since the 1950s at Nippon Yakin Kogyo,Oheyama Works,Japan.Limestone was used as an additive to adjust the slag composition for lowering the slag melting point.The ferronickel product was recovered by means of a magnetic separator from semi-molten slag and metal after water quenching.To increase the efficiency of magnetic separation,a large particle size of ferronickel is desired.Therefore,in this study,the influences of CaO,CaF2,and H3BO3 additives on the evolution of ferronickel particle at≤1250℃were investigated.The experiments were conducted at 900–1250℃with the addition of CaO,CaF2,and H3BO3.The reduction processes were carried out in a horizontal tube furnace for 2 h under argon atmosphere.At 1250℃,with the CaO addition of 10 wt%of the ore weight,ferronickel particles with size of 20μm were obtained.The ferronickel particle size increased to 165μm by adding 10 wt%CaO and 10 wt%CaF2.The addition of boric acid further increased the ferronickel particle size to 376μm,as shown by the experiments with the addition of 10 wt%CaO,10 wt%CaF2,and 10 wt%H3BO3.  相似文献   

2.
An effective process for recycling lead from hazardous waste cathode ray tubes(CRTs) funnel glass through traditional lead smelting has been presented previously. The viscous behavior of the molten high lead slag, which is affected by the addition of funnel glass, plays a critical role in determining the production efficiency. Therefore, the viscosities of the CaO–SiO_2–"FeO"–12wt%ZnO–3wt%Al_2O_3 slags were measured in the current study using the rotating spindle method. The slag viscosity decreases as the CaO/SiO_2 mass ratio is increased from 0.8 to 1.2 and also as the FeO content is increased from 8wt% to 20wt%. The breaking temperature of the slag is lowered substantially by the addition of FeO, whereas the influence of the CaO/SiO_2 mass ratio on the breaking temperature is complex. The structural analysis of quenched slags using Fourier transform infrared(FTIR) spectroscopy and Raman spectroscopy reveals that the silicate network structure is depolymerized with increasing CaO/SiO_2 mass ratio or increasing FeO content. The [FeO_6]-octahedra in the slag melt increase as the CaO/SiO_2 mass ratio or the FeO content increases. This increase can further decrease the degree of polymerization(DOP) of the slag. Furthermore, the activation energy for viscous flow decreases both with increasing CaO/SiO_2 mass ratio and increasing FeO content.  相似文献   

3.
Industrial experiments with three types of slags were performed to investigate the effect of slag on oxide inclusions during electroslag remelting(ESR) process. G20CrNi2Mo bearing steel was used as the consumable electrode and remelted using a 2400-kg industrial furnace. The results showed that most inclusions in the electrode were low-melting-point CaO-MgO-Al_2O_3. After ESR, all the inclusions in ingots were located outside the liquid region. When the slag consisted of 65.70 wt% CaF_2, 28.58 wt% Al_2O_3, and 4.42 wt% CaO was used, pure Al_2O_3 were the dominant inclusions in ingot, some of which presented a clear trend of agglomeration. When the ingot was remelted by a multi-component slag with 16.83 wt% CaO, a certain amount of sphere CaAl_4O_7 inclusions larger than 5 μm were generated in ingot. The slag with 8.18 wt% CaO exhibited greater capacity to control the inclusion characteristics. Thermodynamic calculations indicated that the total Ca and Mg in ingots were attributed from the relics in electrode and strongly influenced by the slag composition. The formation of ingot inclusions was calculated by FactSage~(TM) 7.0, and the results were basically in accordance with the observed inclusions, indicating that a quasi-thermodynamic equilibrium could be obtained in the metal pool.  相似文献   

4.
The preparation of ferronickel alloy from the nickel laterite ore with low Co and high MgO contents was studied by using a pre-reduction-smelting method. The effects of reduction time, calcination temperature, quantity of reductant and calcium oxide (CaO), and pellet diameter on the reduction ratio of Fe and on the pellet strength were investigated. The results show that, for a roasting temperature >800℃, a roasting time >30 min, 1.5wt% added anthracite coal, 5wt% added CaO, and a pellet size of~10 mm, the reduction ratio of Fe exceeds 70% and the compressive strength of the pellets exceeds 10 kg per pellet. Reduction smelting experiments were performed by varying the smelting time, temperature, quantity of reductant and CaO, and reduction ratio of Fe in the pellets. Optimal conditions for the reduction smelting process are as follows:smelting time, 30-45 min; smelting temperature, 1550℃; quantity of reductant, 4wt%-5wt%; and quantity of CaO, 5wt%; leading to an Fe reduction ratio of 75% in the pellets. In addition, the mineral composition of the raw ore and that during the reduction process were investigated by process mineralogy.  相似文献   

5.
We investigated the effect of Al_2O_3 content on the viscosity of CaO–SiO_2–Al_2O_3–8wt%MgO–1wt%Cr_2O_3 (mass ratio of CaO/SiO_2is 1.0,and Al_2O_3 content is 17wt%–29wt%) slags.The results show that the viscosity of the slag increases gradually with increases in the Al_2O_3content in the range of 17wt%to 29wt%due to the role of Al_2O_3 as a network former in the polymerization of the aluminosilicate structure of the slag.With increases in the Al_2O_3 content from 17wt%to 29wt%,the apparent activation energy of the slags also increases from 180.85 to 210.23 k J/mol,which is consistent with the variation in the critical temperature.The Fourier-transform infrared spectra indicate that the degree of polymerization of this slag is increased by the addition of Al_2O_3.The application of Iida’s model for predicting the slag viscosity in the presence of Cr_2O_3 indicates that the calculated viscosity values fit well with the measured values when both the temperature and Al_2O_3 content are at relatively low levels,i.e.,the temperature range of 1673 to 1803 K and the Al_2O_3 content range of 17wt%–29wt%in CaO–SiO_2–Al_2O_3–8wt%MgO–1wt%Cr_2O_3 slag.  相似文献   

6.
To design optimal pyrometallurgical processes for nickel and cobalt recycling, and more particularly for the end-of-life process of Ni–Co–Fe-based end-of-life(EoL) superalloys, knowledge of their activity coefficients in slags is essential. In this study, the activity coefficients of NiO and CoO in CaO–Al_2O_3–SiO_2 slag, a candidate slag used for the EoL superalloy remelting process, were measured using gas/slag/metal equilibrium experiments. These activity coefficients were then used to consider the recycling efficiency of nickel and cobalt by remelting EoL superalloys using CaO–Al_2O_3–SiO_2 slag. The activity coefficients of NiO and CoO in CaO–Al_2O_3–SiO_2 slag both show a positive deviation from Raoult's law, with values that vary from 1 to 5 depending on the change in basicity. The activity coefficients of NiO and CoO peak in the slag with a composition near B =(%CaO)/(%SiO_2) = 1, where B is the basicity. We observed that controlling the slag composition at approximately B = 1 effectively reduces the cobalt and nickel oxidation losses and promotes the oxidation removal of iron during the remelting process of EoL superalloys.  相似文献   

7.
To elucidate the behavior of slag films in an electroslag remelting process, the fluoride evaporation and crystallization of CaF2–CaO–Al2O3–(TiO2) slags were studied using the single hot thermocouple technique. The crystallization mechanism of TiO2-bearing slag was identified based on kinetic analysis. The fluoride evaporation and incubation time of crystallization in TiO2-free slag are found to considerably decrease with decreasing isothermal temperature down to 1503 K. Fish-bone and flower-like CaO crystals precipitate in TiO2-free slag melt, which is accompanied by CaF2 evaporation from slag melt above 1503 K. Below 1503 K, only near-spherical CaF2 crystals form with an incubation time of less than 1 s, and the crystallization is completed within 1 s. The addition of 8.1wt% TiO2 largely prevents the fluoride evaporation from slag melt and promotes the slag crystallization. TiO2 addition leads to the precipitation of needle-like perovskite (CaTiO3) crystals instead of CaO crystals in the slag. The crystallization of perovskite (CaTiO3) occurs by bulk nucleation and diffusion-controlled one-dimensional growth.  相似文献   

8.
The sticking phenomenon between molten slag and refractory is one of the crucial problems when preparing ferronickel from laterite ore using rotary hearth furnace or rotary kiln processes. This study aims to ameliorate sticking problems by using silicon dioxide (SiO2) to adjust the melting degree of the briquette during reduction roasting. Thermodynamic analysis indicates that the melting temperature of the slag gradually increases with an increase in the SiO2 proportion (SiO2/(SiO2 + Al2O3 + MgO) mass ratio). Experimental validations also prove that the briquette retains its original shape when the SiO2 proportion is greater than 75wt%, and sticking problems are avoided during reduction. A ferronickel product with 8.33wt% Ni and 84.71wt% Fe was prepared via reductive roasting at 1500℃ for 90 min with a SiO2 proportion of 75wt% and a C/O molar ratio of 1.0 followed by dry magnetic separation; the corresponding recoveries of Ni and Fe reached 75.70% and 77.97%, respectively. The microstructure and phase transformation of reduced briquette reveals that the aggregation and growth of ferronickel particles were not significantly affected after adding SiO2 to the reduction process.  相似文献   

9.
Waterborne nanoscale carbon black dispersion (NCBD) was widely used in inkjet printing, spun.dyeing fibers and coloration fabrics. In this paper, NCBD was prepared using sodium carboxymethyl cellulose (CMC) as dispersant. Effects of CMC viscosity, ultrasonic time and oxidation with hydrogen peroxide on carbon black (CB) particle size were discussed. The results showed that CB particle size decreased by mechanical agitation while it Increased by ultrasonic with the increase of CMC viscosity. Uitrasonk is a more effective method to disperse CB particles than that of mechanical agitation. CB particle size lbviously decreased with itcreasing ultrasonic time and arrived at about 160 nm for 60min.In addition,oxidation with 2 mol/L of H2O2 and 0.2wt% of CMC300 reduced CB particle size to 160nm at 90℃ for 2.5h.  相似文献   

10.
An effective process for recycling lead from hazardous waste cathode ray tubes (CRTs) funnel glass through traditional lead smelting has been presented previously. The viscous behavior of the molten high lead slag, which is affected by the addition of funnel glass, plays a critical role in determining the production efficiency. Therefore, the viscosities of the CaO-SiO2-"FeO"-12wt%ZnO-3wt%Al2O3 slags were measured in the current study using the rotating spindle method. The slag viscosity decreases as the CaO/SiO2 mass ratio is increased from 0.8 to 1.2 and also as the FeO content is increased from 8wt% to 20wt%. The breaking temperature of the slag is lowered substantially by the addition of FeO, whereas the influence of the CaO/SiO2 mass ratio on the breaking temperature is complex. The structural analysis of quenched slags using Fourier transform infrared (FTIR) spectroscopy and Raman spectroscopy reveals that the silicate network structure is depolymerized with increasing CaO/SiO2 mass ratio or increasing FeO content. The[FeO6]-octahedra in the slag melt increase as the CaO/SiO2 mass ratio or the FeO content increases. This increase can further decrease the degree of polymerization (DOP) of the slag. Furthermore, the activation energy for viscous flow decreases both with increasing CaO/SiO2 mass ratio and increasing FeO content.  相似文献   

11.
We investigated the effect of Al2O3 content on the viscosity of CaO-SiO2-Al2O3-8wt%MgO-1wt%Cr2O3(mass ratio of CaO/SiO2 is 1.0,and Al2O3 content is 17wt%-29wt%)slags.The results show that the viscosity of the slag increases gradually with increases in the Al2O3 content in the range of 17wt%to 29wt%due to the role of Al2O3 as a network former in the polymerization of the aluminosilicate structure of the slag.With increases in the Al2O3 content from 17wt%to 29wt%,the apparent activation energy of the slags also increases from 180.85 to 210.23 kJ/mol,which is consistent with the variation in the critical temperature.The Fourier-transform infrared spectra indicate that the degree of polymerization of this slag is increased by the addition of Al2O3.The application of Iida’s model for predicting the slag viscosity in the presence of Cr2O3 indicates that the calculated viscosity values fit well with the measured values when both the temperature and Al2O3 content are at relatively low levels,i.e.,the temperature range of 1673 to 1803 K and the Al2O3 content range of 17wt%-29wt%in CaO-SiO2-Al2O3-8wt%MgO-1wt%Cr2O3 slag.  相似文献   

12.
B–Y modified silicide coatings were prepared on Nb–Si based alloy by pack cementation at 1300 ℃ for 10 h. The effect of Y_2O_3 content in the pack mixtures on microstructure and oxidation resistance of the coatings was investigated. The results show that the four coatings have similar structures, which possess a(Nb,X)Si_2 outer layer and a(Nb,X)_5Si_3 transitional layer. Y_2O_3 content in the pack mixtures has an obvious effect on the Si content in the coating. The mass gains of the coatings prepared with 0.5, 1, 2 and 3 wt% Y_2O_3 in pack mixtures are 2.33, 1.96, 2.05 and 2.86 mg/cm~2 after oxidation at 1250 ℃ for 100 h, respectively. The coating prepared with 1 wt% Y_2O_3 exhibits the best oxidation resistance due to the formation of a dense glass-like borosilicate scale.  相似文献   

13.
The aluminothermic reduction of zinc oxide (ZnO) from alkaline battery anodes using molten Al may be a good option for the elaboration of secondary 7000-series alloys. This process is affected by the initial content of Mg within molten Al, which decreases the surface tension of the molten metal and conversely increases the wettability of ZnO particles. The effect of initial Mg concentration on the aluminothermic reduction rate of ZnO was analyzed at the following values: 0.90wt%, 1.20wt%, 4.00t%, 4.25wt%, and 4.40wt%. The ZnO particles were incorporated by mechanical agitation using a graphite paddle inside a bath of molten Al maintained at a constant temperature of 1123 K and at a constant agitation speed of 250 r/min, the treatment time was 240 min and the ZnO particle size was 450-500 mesh. The results show an increase in Zn concentration in the prepared alloys up to 5.43wt% for the highest initial concentration of Mg. The reaction products obtained were characterized by scanning electron microscopy and X-ray diffraction, and the efficiency of the reaction was measured on the basis of the different concentrations of Mg studied.  相似文献   

14.
Preparing titanium dioxide from titania-rich slag (TiO2 73wt%) by molten NaOH method has been developed. The effects of temperature and reaction time on the titanium conversion were investigated. The results showed that temperature had significant influence on the titanium conversion as well as the structure of the product. About 92% of titanium in the titania-rich slag could be converted after reacting with NaOH at 500℃ for 1 h. Metatitanic acid was formed through the steps of washing treatment, acid dissolution, and hydrolysis. Well-dispersed spherical titanium dioxide particles with an average size of 0.1-0.4 μm can be obtained by calcination of metatitanic acid. In addition, the content of titanium dioxide in the product is up to 98.6wt%, which can be used as pigments after further treatment of coating and crushing.  相似文献   

15.
The demanganization reaction kinetics of carbon-saturated liquid iron with an eight-component slag consisting of CaO–SiO_2–MgO–FeO–MnO–Al_2O_3–TiO_2–CaF_2 was investigated at 1553, 1623, and 1673 K in this study. The rate-controlling step(RCS) for the demanganization reaction with regard to the hot metal pretreatment conditions was studied via kinetics analysis based on the fundamental equation of heterogeneous reaction kinetics. From the temperature dependence of the mass transfer coefficient of a transition-metal oxide(Mn O), the apparent activation energy of the demanganization reaction was estimated to be 189.46 k J·mol~(–1) in the current study, which indicated that the mass transfer of Mn O in the molten slag controlled the overall rate of the demanganization reaction. The calculated apparent activation energy was slightly lower than the values reported in the literature for mass transfer in a slag phase. This difference was attributed to an increase in the "specific reaction interface"(SRI) value, either as a result of turbulence at the reaction interface or a decrease of the absolute amount of slag phase during sampling, and to the addition of calcium fluoride to the slag.  相似文献   

16.
The desulfurization ability of refining slag with relative lower basicity (B) and Al2O3 content (B = 3.5–5.0; 20wt%–25wt% Al2O3) was studied. Firstly, the component activities and sulfide capacity (CS) of the slag were calculated. Then slag-metal equilibrium experiments were carried out to measure the equilibrium sulfur distribution (LS). Based on the laboratorial experiments, slag composition was optimized for a better desulfurization ability, which was verified by industrial trials in a steel plant. The obtained results indicated that an MgO-saturated CaO-Al2O3-SiO2-MgO system with the basicity of about 3.5–5.0 and the Al2O3 content in the range of 20wt%–25wt% has high activity of CaO (aCaO), with no deterioration of CS compared with conventional desulfurization slag. The measured LS between high-strength low-alloyed (HSLA) steel and slag with a basicity of about 3.5 and an Al2O3 content of about 20wt% and between HSLA steel and slag with a basicity of about 5.0 and an Al2O3 content of about 25wt% is 350 and 275, respectively. The new slag with a basicity of about 3.5–5.0 and an Al2O3 content of about 20wt% has strong desulfurization ability. In particular, the key for high-efficiency desulfurization is to keep oxygen potential in the reaction system as low as possible, which was also verified by industrial trials.  相似文献   

17.
CuO-doped CaSiO3–1 wt% Al2O3 ceramics were synthesized via a traditional solid-state reaction method, and their sintering behavior,microstructure and microwave dielectric properties were investigated. The results showed that appropriate CuO addition could accelerate the sintering process and assist the densification of CaSiO3–1 wt% Al2O3 ceramics, which could effectively lower the densification temperature from1250 1C to 1050 1C. However, the addition of CuO undermined the microwave dielectric properties. The optimal amount of CuO addition was found to be 0.8 wt%, and the derived CaSiO3–Al2O3ceramic sintered at 1100 1C presented good microwave dielectric properties of εr?7.27,Q f?16,850 GHz and τf? 39.53 ppm/1C, which is much better than those of pure CaSiO3 ceramic sintered at 1340oC(Q f?13,109 GHz).The chemical compatibility of the above ceramic with 30 Pd/70 Ag during the cofiring process has also been investigated, and the result showed that there was no chemical reaction between palladium–silver alloys and ceramics.& 2014 Chinese Materials Research Society. Production and hosting by Elsevier B.V. All rights reserved.  相似文献   

18.
Although the total amount of boron resources in China is high, the grades of these resources are low. The authors have already proposed a new comprehensive utilization process of boron-bearing iron concentrate based on the iron nugget process. The present work describes a further optimization of the conditions used in the previous study. The effects of CaO on the reduction–melting behavior and properties of the boron-rich slag are presented. CaO improved the reduction of boron-bearing iron concentrate/carbon composite pellets when its content was less than 1wt%. Melting separation of the composite pellets became difficult with the CaO content increased. The sulfur content of the iron nugget gradually decreased from 0.16wt% to 0.046wt% as the CaO content of the pellets increased from 1wt% to 5wt%. CaO negatively affected the iron yield and boron extraction efficiency of the boron-rich slag. The mineral phase evolution of the boron-rich slag during the reduction–melting separation of the composite pellets with added CaO was also deduced.  相似文献   

19.
The slag cleaning (or matte settling) process was experimentally investigated at 1573 K using a fayalitic nickel converter slag containing spinel and matte/alloy particles. The addition of various amounts of spent potlining (SPL) was studied in terms of its influence on matte settling and the overall metal recoveries. The slags produced were characterized by scanning electron microscopy, energy-dispersive spectroscopy, and wet chemical analysis using inductively coupled plasma optical emission spectrometry. The presence of solid spinel particles in the molten slag hindered coalescence and settling of matte/alloy droplets. Matte settling was effectively promoted with the addition of as little as 2wt% SPL because of the reduction of spinel by the carbonaceous component of the SPL. The reduced viscosity of the molten slag in the presence of SPL also contributed to the accelerated matte settling. Greater metal recoveries were achieved with larger amounts of added SPL. Fast reduction of the molten slag at 1573 K promoted the formation of highly dispersed metal particles/clusters via accelerated nucleation in the molten slag, which increased the overall slag viscosity. This increase in viscosity, when combined with rapid gas evolution from accelerated reduction reactions, led to slag foaming.  相似文献   

20.
Mg–8Li–3Al+xCe alloys (x = 0.5wt%, 1.0wt%, and 1.5wt%) were prepared through a casting route in an electric resistance furnace under a controlled atmosphere. The cast alloys were characterized by X-ray diffraction, optical microscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The corrosion behavior of the as-cast Mg–8Li–3Al+xCe alloys were studied under salt spray tests in 3.5wt% NaCl solution at 35°C, in accordance with standard ASTM B–117, in conjunction with potentiodynamic polarization (PDP) tests. The results show that the addition of Ce to Mg–8Li–3Al (LA83) alloy results in the formation of Al2Ce intermetallic phase, refines both the α-Mg phase and the Mg17Al12 intermetallic phase, and then increases the microhardness of the alloys. The results of PDP and salt spray tests reveal that an increase in Ce content to 1.5wt% decreases the corrosion rate. The best corrosion resistance is observed for the LA83 alloy sample with 1.0wt% Ce.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号