首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
文章比较了高铁酸钾、次氯酸钠、高铁酸钾与次氯酸钠联用对PVA的降解效果,考察了高铁酸钾和次氯酸钠的投加量、氧化时间、PVA溶液的pH值和初始质量浓度对PVA去除率的影响。通过红外光谱及黏度测定,对降解产物及其分子量变化进行了分析。结果表明,用高铁酸钾与次氯酸钠联合氧化PVA时,降解效果最佳;在3.0 g/L,pH值为7.2的PVA溶液中,当高铁酸钾与次氯酸钠的投加量分别为0.32 g/L、3.92 g/L,反应时间为50 min时,PVA的去除率大于98%,COD去除率大于40%;在联合氧化降解过程中,PVA断链成小分子物质,最终降解产物主要为羧基化合物。  相似文献   

2.
采用次氯酸钾法制备高铁酸钾,并用于降解水中的苯胺.通过对比试验证明高铁酸钾对苯胺的去除效果远优于单用三氯化铁絮凝剂及次氯酸钾氧化剂,其最佳反应条件为:在高铁酸钾投量与苯胺的摩尔比为1∶1,pH值=3.0~9.0,反应时间为20min的条件下,苯胺的去除率可达80%以上.根据高铁酸钾降解苯胺的产物光谱分析可知,高铁酸根首先对苯环上的NH2发起攻击,通过一系列反应生成偶氮苯等中间产物,这些中间产物有一部分可被开环并继续被氧化成为烷烃及烯烃等脂肪烃,但反应后残余的偶氮苯等中间产物依然是微生物难降解物质.高铁酸钾应用于难降解苯胺废水生物处理的预处理,可以有效去除废水中苯胺,并在一定程度上改善苯胺废水的可生化性.  相似文献   

3.
以高铁酸钾作为氧化剂对卡马西平(CBZ)进行氧化降解,分别考察了高铁酸钾投加量、CBZ初始浓度、温度和pH对高铁酸钾降解CBZ的影响,并进行了反应动力学计算.采用响应面法拟合了高铁酸钾对CBZ降解率与反应条件之间的回归方程.实验结果表明,高铁酸钾降解CBZ的反应符合二级反应动力学规律.增加高铁酸钾浓度可以有效提高CBZ降解率.提高CBZ初始浓度增加了氧化降解的CBZ总量,但降低了CBZ降解率.升高温度促进CBZ降解.pH是高铁酸钾降解CBZ的关键因素,pH低于7.0时CBZ降解的初始反应速率较高,但降解率比较低;pH高于7.0时CBZ降解的初始反应速率低,但降解率比较高.高铁酸钾降解CBZ的主要反应途径为高铁酸根对烯烃双键的氧化.  相似文献   

4.
李占双  闫冰  付澈 《应用科技》2004,31(9):59-61
研究了在超声/H2O2联合作用下,超声场中甲醛的降解过程,考察了超声时间、甲醛浓度、pH值、氧化剂H2O2的浓度等因素对降解率的影响.实验结果表明:甲醛的初始浓度与降解率基本成线性关系;pH值的变化对降解率影响较大,超声波/H2O2联合工艺与单独超声作用相比,降解率有了显著的提高,通常处理100min后,可以获得85%的降解率,其降解过程符合一级动力学方程.  相似文献   

5.
通过分析室内装修中污染的现状,指出用光触媒降解甲醛的优越性。采用实验研究了光照种类和强度、温度、湿度及喷涂面积对光触媒降解甲醛的影响。结果表明:强的紫外线光照、大的喷涂面积、高温能促进光触媒降解甲醛,而高湿度不利于光触媒降解甲醛。  相似文献   

6.
从纺织厂废水淤泥中分离纯化得到一株能以甲醛为唯一碳源的甲醛降解菌。细菌常规特征:菌落形状呈圆形,边缘整齐,呈乳白色,中间有圆形凹陷,有臭味。显微镜油镜下观察细菌形态:细菌为杆菌,有芽胞,侧生鞭毛,能运动,无荚膜。测定了细菌的生长曲线及细菌对甲醛的降解能力。通过pH、温度和初始甲醛浓度来考察,用正交实验设计得出了菌株的最佳生长条件为:PH8、温度30℃、初始甲醛浓度320μL甲醛/100mL培养基。  相似文献   

7.
竹炭负载二氧化钛光催化降解甲醛的研究   总被引:1,自引:0,他引:1  
采用溶胶-凝胶法制备TiO2溶胶,以浸渍-过滤法将TiO2负载于颗粒竹炭的表面,制成竹炭负载二氧化钛的复合型光催化剂TiO2/BC,并对甲醛进行催化降解.结果表明:紫外光照射下TiO2/BC催化剂对甲醛有催化降解活性,光照3 h甲醛降解率达45.6%,负载次数以3次为佳;太阳光照射下甲醛降解率比日光灯照射下的高,紫外光照射下甲醛的降解率最高;当紫外灯强度达到一定值后,再增加照射强度并不能有效提高降解率.  相似文献   

8.
研究了无机盐对高铁酸钾去除苯酚的影响,考察了盐的用量与苯酚的去除率之间的关系。通过对比分析得出:高铁酸钾氧化去除有机物与加入的盐类在溶液中电离后阳离子的存在状态、高铁酸根的质子化程度和高铁酸钾的稳定性等因素有关。  相似文献   

9.
采用蒸发、衍生化等方法分离、富集出高铁酸钾氧化降解苯酚的中间产物,利用气相色谱一质谱联用仪(GC-MS)定性分析出了对苯二酚、苯醌、联苯二酚和苯氧基苯酚以及草酸、顺丁烯二酸和反丁烯二酸等降解中间产物,并依此推测了高铁酸钾降解苯酚的主要途径.  相似文献   

10.
纳米TiO2的制备及甲醛光催化降解的研究   总被引:3,自引:0,他引:3  
以钛酸丁酯为前驱体,采用溶胶—凝胶法制备Ti02粉体,并通过TEM和XRD对其进行了结构性能表征。将Ti02粉体制备成薄膜后,进行甲醛的光催化降解实验,考察了制备条件对光催化性能的影响。TEM和XRD检测结果表明,Ti02粉体平均粒径为10-40nm,晶型绝大部分为锐钛型。实验研究表明,在溶肢体系pH=3,钛酸丁酯5mL,无水乙醇34mL,去离子水2mL,冰醋酸2mL,活化温度600℃,活化时间5h条件下,制得的Ti02光催化活性最高。  相似文献   

11.
甲醛是一种来源广泛的致癌和畸变污染物,研究能够降解甲醛的材料已成为各国关注的焦点。光催化技术能够利用太阳能、无二次污染的降解甲醛,具有巨大的发展潜力。然而,光催化降解的反应动力学还不能量化影响因素,因此研究光催化反应动力学十分必要。从0.5%La、0.5%Fe共掺杂TiO2/活性炭复合材料降解甲醛过程出发,重点研究了甲醛初始浓度、通氧量及光照强度等因素对甲醛降解率的影响,得到了各因素对反应动力学参数的影响,进而以此得到了复合材料降解甲醛的反应动力学方程。  相似文献   

12.
从印染厂采集的活性污泥中筛选得到1株快速降解甲醛的菌株并命名为 W1,通过形态与生理生化特征的鉴定,初步鉴定 W1菌株为假单胞菌属(Pseudomonas).以海藻酸钠为包埋载体固定 W1菌株进行降解甲醛的初步研究,采用不同海藻酸钠浓度、菌悬液添加量配制成不同的包埋载体,利用 L9(33)正交试验对 W1菌株降解甲醛条件进行优化,分析其甲醛降解率的变化.实验结果表明:培养基为(NH4)2 SO42.4 g/L, MgSO4?7H2 O 0.2 g/L,微量元素母液0.1 mL,pH 值9.0,30℃恒温培养,在此条件下甲醛48h内的降解率达80.3%.通过对甲醛降解菌 W1固定化的研究,为生物法去除甲醛的应用奠定基础.  相似文献   

13.
室内环境空气中甲醛测定方法的研究   总被引:1,自引:0,他引:1  
环境空气中的甲醛与酚试剂作用生成嗪,嗪在酸性溶液中被高价铁离子氯化生成蓝绿色化合物,根据颜色深浅比色定量。  相似文献   

14.
本文用氯酸盐氧化法可得到纯度为97%以上的高铁酸钾。高铁酸钾溶液很不稳定,实验研究了在常温下时间、碱度、稳定剂对高铁酸钾溶液稳定性的影响,以期得到合理的控制条件。  相似文献   

15.
紫外光/高铁酸钾协同氧化降解水中苯酚   总被引:3,自引:0,他引:3  
采用紫外光/高铁酸盐协同方法对水中苯酚的氧化去除进行了研究,并将紫外光/高铁酸盐协同方法与单纯的高铁酸盐氧化法进行了对比,对影响苯酚去除率的溶液pH、高铁酸盐用量等因素进行了考察.结果表明,紫外光/高铁酸盐协同方法明显优于单纯的高铁酸盐氧化法,苯酚的去除率随溶液pH降低、高铁酸盐用量增加而不断升高;在紫外光照射、溶液pH=4、高铁酸盐质量浓度为30 mg.L-1的条件下,水中苯酚的去除率可达到90%左右,与单纯高铁酸盐氧化相比,苯酚的去除率提高近30%.  相似文献   

16.
针对建筑环境中的挥发性有机化合物甲醛,在原有管状反应器内增设带有工艺缺口的直肋片,并在密闭循环系统中对其净化效果进行分析,又利用计算流体力学(CFD)的方法得到了反应器内部的流速和光强分布.同时,基于模型计算的方法,建立了污染物循环降解模型.结果表明:改进后的管状反应器,反应面积增加,气体停留时间延长,平衡了传质-反应能力,反应速率提高了约1倍;增设肋片后,内壁面光强有所减弱,反应器中间段光强与流速耦合较好,而两端由于气流扰动大且光强较弱,反应速率会受影响;另外,降解模型的预测值稍高于实测值,但两者变化趋势相同,该模型能较准确的预测甲醛的反应速率.  相似文献   

17.
高铁酸钾的电化学合成研究   总被引:4,自引:0,他引:4  
以金属铁为正极、以铂为负极材料,13 5mol·dm-3氢氧化钾溶液为电解液在隔膜电解池中电化学合成高铁酸钾。理想合成温度为30℃,电流密度约为0 5mA cm2,在饱和氢氧化钾溶液中合成电流效率为58 7%。充电电压为1 92~1 83V。电化学合成时间为2~3h。  相似文献   

18.
高铁酸钾溶液热稳定性研究   总被引:3,自引:0,他引:3  
电化学合成的高铁酸钾溶液有较高的活性。其分解过程为一级反应,反应活化能为12.7kJ/mol。硅酸钠对增加其稳定性有较大的帮助。固体高铁酸钡中加入微量该物质,其稳定性得到较大改善。  相似文献   

19.
考察了甲醛在平板式和管式两种介质阻挡放电(DBD)等离子体反应器中的降解能耗以及两种反应器中放电电压、甲醛初始质量浓度和停留时间对甲醛降解率的影响.结果表明:与管式等离子体反应器相比,平板式反应器的甲醛降解能耗大大降低(从55.0W·h/m^3降低至12.8W·h/m^3);管式反应器和平板式反应器的甲醛降解率均随着放电电压的升高而增大,并分别在11 kV和18 kV处出现拐点,随后降解率增幅减小;甲醛降解率随初始质量浓度的增加先增大后降低,随停留时间的延长而增大.  相似文献   

20.
以钛酸丁酯为前驱物,采用溶胶-凝胶-水热晶化法制备了锐钛型氟掺杂TiO2(F—Ti02)溶胶;把F—TiO2溶胶涂覆在荧光灯管上,经低温(120—280℃)烘干后,制备了具有光催化净化空气功能荧光灯,以含有甲醛的空气为模拟污染空气,评价了荧光灯管的光催化净化活性,并且测定了溶胶干燥制得的粉末物的吸附性能.运用紫外-可见漫反射光谱(UV—Vis-DRS)及原子力显微镜(AFM)研究了在玻璃表面形成的F—TiO2膜的有关特征.结果表明:锐钛矿型纳米F-TiO2溶胶具有良好的降解甲醛和净化空气的能力,当甲醛浓度小于5.4mg/m^3及流速小于0.015L/min时,催化降解率高达90%.F—TiO2膜具有荧光性,涂膜后的荧光灯光强度增加2%-3%;氟的掺杂提高了催化剂的表面酸度、晶化度和吸附能力,从而有效地提高了F—TiO2膜的催化活性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号