首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 946 毫秒
1.
Several dietary factors and their genetic modifiers play a role in neurological disease and affect the human brain. The structural and functional integrity of the living brain can be assessed using neuroimaging, enabling large-scale epidemiological studies to identify factors that help or harm the brain. Iron is one nutritional factor that comes entirely from our diet, and its storage and transport in the body are under strong genetic control. In this review, we discuss how neuroimaging can help to identify associations between brain integrity, genetic variations, and dietary factors such as iron. We also review iron’s essential role in cognition, and we note some challenges and confounds involved in interpreting links between diet and brain health. Finally, we outline some recent discoveries regarding the genetics of iron and its effects on the brain, suggesting the promise of neuroimaging in revealing how dietary factors affect the brain.  相似文献   

2.
Embryonic stem cells (ESCs) can undergo unlimited self-renewal and retain the pluripotency to differentiate into all cell types in the body. Therefore, as a renewable source of various functional cells in the human body, ESCs hold great promise for human cell therapy. During the rapid proliferation of ESCs in culture, DNA damage, such as DNA double-stranded breaks, will occur in ESCs. Therefore, to realize the potential of ESCs in human cell therapy, it is critical to understand the mechanisms how ESCs activate DNA damage response and DNA repair to maintain genomic stability, which is a prerequisite for their use in human therapy. In this context, it has been shown that ESCs harbor much fewer spontaneous mutations than somatic cells. Consistent with the finding that ESCs are genetically more stable than somatic cells, recent studies have indicated that ESCs can mount more robust DNA damage responses and DNA repair than somatic cells to ensure their genomic integrity.  相似文献   

3.
The viability of any species requires that the genome is kept stable as it is transmitted from generation to generation by the germ cells. One of the challenges to transgenerational genome stability is the potential mutagenic activity of transposable genetic elements, particularly retrotransposons. There are many different types of retrotransposon in mammalian genomes, and these target different points in germline development to amplify and integrate into new genomic locations. Germ cells, and their pluripotent developmental precursors, have evolved a variety of genome defence mechanisms that suppress retrotransposon activity and maintain genome stability across the generations. Here, we review recent advances in understanding how retrotransposon activity is suppressed in the mammalian germline, how genes involved in germline genome defence mechanisms are regulated, and the consequences of mutating these genome defence genes for the developing germline.  相似文献   

4.
Eight different rabies vaccines were tested for their potency in the standard mouse potency test using 3-, 5- and 7-week-old mice. 5-week-old mice seem to be best suited for this purpose, variability from test to test could be reduced considerably. An ELISA was used in parallel for the evaluation of the rabies glycoprotein content of rabies vaccines. Results of the mouse potency test correlated well with those of the ELISA if highly purified human vaccines were tested. Unspecific reactions in the ELISA caused by adjuvanted veterinary vaccines could not be blocked. Further experiments will be needed in order to evaluate the potency of inactivated veterinary rabies vaccines by a in vitro test.  相似文献   

5.
Summary Eight different rabies vaccines were tested for their potency in the standard mouse potency test using 3-, 5- and 7-week-old mice. 5-week-old mice seem to be best suited for this purpose, variability from test to test could be reduced considerably. An ELISA was used in parallel for the evaluation of the rabies glycoprotein content of rabies vaccines. Results of the mouse potency test correlated well with those of the ELISA if highly purified human vaccines were tested. Unspecific reactions in the ELISA caused by adjuvanted veterinary vaccines could not be blocked. Further experiments will be needed in order to evaluate the potency of inactivated veterinary rabies vaccines by a in vitro test.  相似文献   

6.
Avian influenza viruses infecting humans   总被引:24,自引:0,他引:24  
Avian species, particularly waterfowl, are the natural hosts of influenza A viruses. Influenza viruses bearing each of the 15 hemagglutinin and nine neuraminidase subtypes infect birds and serve as a reservoir from which influenza viruses or genes are introduced into the human population. Viruses with novel hemagglutinin genes derived from avian influenza viruses, with or without other accompanying avian influenza virus genes, have the potential for pandemic spread when the human population lacks protective immunity against the new hemagglutinin. Avian influenza viruses were thought to be limited in their ability to directly infect humans until 1997, when 18 human infections with avian influenza H5N1 viruses occurred in Hong Kong. In 1999, two human infections with avian influenza H9N2 viruses were also identified in Hong Kong. These events established that avian viruses could infect humans without acquiring human influenza genes by reassortment in an intermediate host and highlighted challenges associated with the detection of human immune responses to avian influenza viruses and the development of appropriate vaccines.  相似文献   

7.
The glutathione peroxidases   总被引:16,自引:0,他引:16  
There are several proteins in mammalian cells that can metabolize hydrogen peroxide and lipid hydroperoxides. These proteins include four selenium-containing glutathione peroxidases that are found in different cell fractions and tissues of the body. This review considers the structure and distribution of the selenoperoxidases and how this relates to their biological function. The functions of the selenoperoxidases were originally studied in systems where their activity was manipulated by changing dietary selenium levels. More recently, molecular techniques have allowed overexpression of selenoperoxidases in cell lines and animals. Additionally, cellular glutathione peroxidase knockout mice have been used to investigate the functions of this protein. From this work it is clear that the selenoperoxidases are involved in cell antioxidant systems. However, they also have more subtle functions in ensuring the regulation and formation of arachadonic acid metabolites that are derived from hydroperoxide intermediates. The range of biological processes, which are potentially dependent on optimal selenoperoxidase activity in mammals, emphasises the importance of achieving adequate selenium intake in the diet.  相似文献   

8.
Following a skin injury, the damaged tissue is repaired through the coordinated biological actions that constitute the cutaneous healing response. In mammals, repaired skin is not identical to intact uninjured skin, however, and this disparity may be caused by differences in the mechanisms that regulate postnatal cutaneous wound repair compared to embryonic skin development. Improving our understanding of the molecular pathways that are involved in these processes is essential to generate new therapies for wound healing complications. Here we focus on the roles of several key developmental signaling pathways (Wnt/β-catenin, TGF-β, Hedgehog, Notch) in mammalian cutaneous wound repair, and compare this to their function in skin development. We discuss the varying responses to cutaneous injury across the taxa, ranging from complete regeneration to scar tissue formation. Finally, we outline how research into the role of developmental pathways during skin repair has contributed to current wound therapies, and holds potential for the development of more effective treatments.  相似文献   

9.
Vaccination is a highly effective means of disease prevention and has saved countless lives worldwide over the past 200 years. Traditional vaccines based on killed and attenuated organisms and inactivated toxins have constituted the majority of clinically used vaccines to date, but novel vaccines based on subunits of these organisms will be increasingly represented in future. In contrast to attenuated and whole cell vaccines, subunit vaccines do not generally contain immune-stimulatory components and are poorly immunogenic. As a result, new, potent and safe adjuvants and delivery systems are needed to enhance the immunogenicity of these vaccines. Furthermore, there is a drive to replace injected vaccines with those that can be administered by mucosal routes. Since the induction of innate immunity is crucial for vaccines to elicit potent antigen specific immune responses, a greater understanding of innate immunity at mucosal surfaces and the mechanism of action of adjuvants and delivery systems is required. Received 28 June 2005; received after revision 2 August 2005; accepted 30 August 2005  相似文献   

10.
Internal interactions within the human circadian system: the masking effect   总被引:1,自引:0,他引:1  
R A Wever 《Experientia》1985,41(3):332-342
In the realm of human circadian rhythms, the masking effect is defined as the change in the course of deep body temperature induced by changes in the degree of physical activity, or by the alteration between sleep and wake. This effect is particularly obvious during internal desynchronization where the rhythms of deep body temperature, and the sleep-wake sleep cycle - i.e. one of the masking factors - run with different periods. Every sleep onset is accompanied by a rapid drop, and wake onset by a rapid rise in deep body temperature, each one with an overshoot of about 50% of the steady state variations. When rhythms are calculated, with the dominant temperature period as the screening period, exclusively from data obtained during sleep episodes, on the one hand, and from those obtained exclusively during wake, on the other, two average cycles emerge: the 'sleep temperature curve' and the 'wake temperature curve'. Both run in parallel but are separated by the 'masking effect'. As derived from many experiments, the mean masking effect amounts to 0.28 +/- 0.06 degree C. The masking effect also depends to some extent on the phase of the temperature rhythm; it is larger than average around the temperature maximum and during the descending phase of the temperature cycle, where the alertness commonly is highest and the probability to sleep, in general, and the REM sleep propensity, in particular, are smaller than average. This also can be interpreted to indicate that the sleep temperature curve is phase advanced relative to the wake temperature curve; this, on the average, by 0.9 +/- 0.3 h. If the individually determined amount of masking is added to the temperature data obtained during sleep, or subtracted from the temperature data obtained during wake, a temperature curve emerges that can be thought of as being 'purified' of the masking effect. Analyses of this artificial curve allow estimation of that part of the internal interactions uninfluenced by the masking effect. On the average, about half of the amount of interaction between the rhythm of sleep-wake and that of deep body temperature is explained by the masking effect, whereas the other half is 'oscillatory interaction'. Both types of interaction are inherent and inseparable parts of the circadian clock mechanism, as can be deduced from model considerations.  相似文献   

11.
Epigenetic mechanisms in mammals   总被引:11,自引:1,他引:10  
DNA and histone methylation are linked and subjected to mitotic inheritance in mammals. Yet how methylation is propagated and maintained between successive cell divisions is not fully understood. A series of enzyme families that can add methylation marks to cytosine nucleobases, and lysine and arginine amino acid residues has been discovered. Apart from methyltransferases, there are also histone modification enzymes and accessory proteins, which can facilitate and/or target epigenetic marks. Several lysine and arginine demethylases have been discovered recently, and the presence of an active DNA demethylase is speculated in mammalian cells. A mammalian methyl DNA binding protein MBD2 and de novo DNA methyltransferase DNMT3A and DNMT3B are shown experimentally to possess DNA demethylase activity. Thus, complex mammalian epigenetic mechanisms appear to be dynamic yet reversible along with a well-choreographed set of events that take place during mammalian development.  相似文献   

12.
The efficiency of test vaccines needs to be evaluated by quantification of the triggered cellular immune response. Usually, for these assays, autologous target cells expressing the vaccine antigen are required. In the context of messenger RNA (mRNA)-based vaccinations, the target cells used for the read-out are mRNA-transfected monocyte-derived dendritic cells (Mo-DCs). Their production typically requires samples of 100 ml blood from the patients, and limits the number of assays that can be performed. We show here that fresh peripheral blood mononuclear cells (PBMCs) can be transfected with mRNA by electroporation. Such cells are as efficient as mRNA-transfected Mo-DCs for their ability to activate memory T cells in vitro. Thus, mRNA-transfected PBMCs are a convenient replacement of mRNA-transfected Mo-DCs for the in vitro monitoring of natural or vaccine-induced immune responses.Received 17 February 2005; received after revision 1 May 2005; accepted 7 Juni 2005  相似文献   

13.
Recent studies have shown that neural crest-derived progenitor cells can be found in diverse mammalian tissues including tissues that were not previously shown to contain neural crest derivatives, such as bone marrow. The identification of those "new" neural crest-derived progenitor cells opens new strategies for developing autologous cell replacement therapies in regenerative medicine. However, their potential use is still a challenge as only few neural crest-derived progenitor cells were found in those new accessible locations. In this study, we developed a protocol, based on wnt1 and BMP2 effects, to enrich neural crest-derived cells from adult bone marrow. Those two factors are known to maintain and stimulate the proliferation of embryonic neural crest stem cells, however, their effects have never been characterized on neural crest cells isolated from adult tissues. Using multiple strategies from microarray to 2D-DIGE proteomic analyses, we characterized those recruited neural crest-derived cells, defining their identity and their differentiating abilities.  相似文献   

14.
Bacteriophages (phages) are omnipresent in our environment, and recent studies highlight their potential impact on the microbial world. Phages can also be present in mammalian organisms, including man (intestines, oral cavity, urine, sputum and serum). Data are available which suggest that those endogenous phages could play an important role in eliminating bacteria and regulating the body ecosystem. Furthermore, our most recent findings suggest that phages can exert immunosuppressive action in the gut, helping control local inflammatory and autoimmune reactions, and demonstrate anticancer activity. We hypothesize that phages could act in concert with the immune system in immunosurveillance against bacteria, viruses and cancer.article dedicated to Professor Ludwik Hirszfeld to commemorate the 50th anniversary of his deathReceived 8 September 2004; received after revision 18 October 2004; accepted 21 October 2004  相似文献   

15.
16.
Cardiovascular development: towards biomedical applicability   总被引:3,自引:0,他引:3  
Investigating the signalling pathways that regulate heart development is essential if stem cells are to become an effective source of cardiomyocytes that can be used for studying cardiac physiology and pharmacology and eventually developing cell-based therapies for heart repair. Here, we briefly describe current understanding of heart development in vertebrates and review the signalling pathways thought to be involved in cardiomyogenesis in multiple species. We discuss how this might be applied to stem cells currently thought to have cardiomyogenic potential by considering the factors relevant for each differentiation step from the undifferentiated cell to nascent mesoderm, cardiac progenitors and finally a fully determined cardiomyocyte. We focus particularly on how this is being applied to human embryonic stem cells and provide recent examples from both our own work and that of others.  相似文献   

17.
While the availability of pluripotent stem cells has opened new prospects for generating neural donor cells for nervous system repair, their capability to integrate with adult brain tissue in a structurally relevant way is still largely unresolved. We addressed the potential of human embryonic stem cell-derived long-term self-renewing neuroepithelial stem cells (lt-NES cells) to establish axonal projections after transplantation into the adult rodent brain. Transgenic and species-specific markers were used to trace the innervation pattern established by transplants in the hippocampus and motor cortex. In vitro, lt-NES cells formed a complex axonal network within several weeks after the initiation of differentiation and expressed a composition of surface receptors known to be instrumental in axonal growth and pathfinding. In vivo, these donor cells adopted projection patterns closely mimicking endogenous projections in two different regions of the adult rodent brain. Hippocampal grafts placed in the dentate gyrus projected to both the ipsilateral and contralateral pyramidal cell layers, while axons of donor neurons placed in the motor cortex extended via the external and internal capsule into the cervical spinal cord and via the corpus callosum into the contralateral cortex. Interestingly, acquisition of these region-specific projection profiles was not correlated with the adoption of a regional phenotype. Upon reaching their destination, human axons established ultrastructural correlates of synaptic connections with host neurons. Together, these data indicate that neurons derived from human pluripotent stem cells are endowed with a remarkable potential to establish orthotopic long-range projections in the adult mammalian brain.  相似文献   

18.
S J Cryz 《Experientia》1991,47(2):146-151
Advances in molecular biology have allowed for the identification of potential vaccine candidates against several parasitic diseases. Antigens from various life stages of Plasmodium and Schistosoma species and filarial worms have been cloned, sequenced and tested as vaccines. Results to date in animal models have been promising. Modest levels of protection against experimental human malaria have been obtained using both sporozoite and blood-stage antigens. However, a greater understanding of the mechanisms which lead to immunity against parasites is required before effective vaccines can be developed.  相似文献   

19.
One problem associated with the development of subunit vaccines is their limited immunogenicity, due to their physico-chemical structure, their inability to encounter the correct MHC restriction element, or the need for strong adjuvants to be delivered along with them. These problems are usually solved by conjugating target epitopes (peptides or oligosaccharides) with carrier proteins which provide a source of T-cell epitopes recognised by a large proportion of the vaccinated individuals. We have shown that mycobacterial hsp65 and hsp70 exert a strong helper effect in vivo when conjugated to synthetic peptides or oligosaccharides. Interestingly, this helper effect did not require the need for any adjuvant, either in mice or in monkeys. The helper effect mediated by the hsp65 required that animals were previously primed with either live BCG or the hsp65 alone; on the other hand, such a priming was not required when the hsp70 was used in the conjugates. Similar results were obtained with HSP molecules fromEscherichia coli. This may suggest that the adjuvant-free helper effect observed applies not only to mycobacterial HSP, but also to HSP from other prokaryotes. These findings suggest that microbial hsp70 could be considered for the design of conjugated vaccine constructs for eventual human use.  相似文献   

20.
Influenza viruses are major human pathogens responsible for respiratory diseases affecting millions of people worldwide and characterized by high morbidity and significant mortality. Influenza infections can be controlled by vaccination and antiviral drugs. However, vaccines need annual updating and give limited protection. Only two classes of drugs are currently approved for the treatment of influenza: M2 ion channel blockers and neuraminidase inhibitors. However, they are often associated with limited efficacy and adverse side effects. In addition, the currently available drugs suffer from rapid and extensive emergence of drug resistance. All this highlights the urgent need for developing new antiviral strategies with novel mechanisms of action and with reduced drug resistance potential. Several new classes of antiviral agents targeting viral replication mechanisms or cellular proteins/processes are under development. This review gives an overview of novel strategies targeting the virus and/or the host cell for counteracting influenza virus infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号