首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
《苏南科技开发》2005,(9):50-50
陆博生物研发的DNA保存及防伪技术已获得3项国家发明专利,而由此衍生出来的商品应用包含DNA防伪标签、DNA防伪芯片,以及DNA安全门禁系统等。去年,文化部启用的新版音像制品防伪标识,以及著名画家萧淑芳女士的作品便采用了陆博生物的DNA防伪技术,以阻击盗版侵权行为的发生。DNA防伪技术的运用并不局限于文化艺术领域,在金融、食品、医药、纺织等众多行业也大有可为。其他一些具有苏州特色的工艺品、食品等,如苏州刺绣、黄天源糕团等都可以如法炮制,以维护企业“金字招牌”不受侵害。  相似文献   

2.
科技真的很神奇!脱 氧 核 糖核酸(DNA)竟然也可以用来防伪!这项由新加坡陆博生物科技(苏州)有限公司发明的技术被广泛应用于烟酒、制药、电子、印刷、芯片甚至书画艺术品的防伪用途。读者们一定很好奇,作为防伪标的的DNA是如何萃取、合成进而被用于这项世界上独一无二的防伪技术的呢?那么,就让我们先来认识一下DNA。  相似文献   

3.
DNA计算是应用分子生物技术进行计算的新方法。应用形式语言及自动机理论技术研究DNA计算理论,有利于推动理论计算科学的发展。本文根据DNA分子的结构及特点给出了DNA分子的形式化描述,介绍了DNA粘接计算模型的文法结构和计算能力,并应用DNA计算方法求解3-SAT问题。  相似文献   

4.
链置换技术是一种体外恒温无酶的分子计算技术,近年来已成为DNA计算领域的常用技术,而人工神经网络是一种模仿生物神经网络结构和功能的计算模型。基于链置换技术可以用生物分子构建神经网络,并作为分类器用于执行各种模式识别任务。文章以链置换逻辑门为基础,构建了一个赢家通吃的分子神经网络计算系统,完成了印刷体汉字数字的模式识别任务。首先将代表数字模式的图片转化成用DNA序列编码的分子数据,再将人工合成的DNA数据链输入到分子神经网络计算系统中,该网络能够利用DNA链置换技术执行生物分子计算,从而实现对输入DNA数据模式的分类,最终的分类结果将会通过荧光分子修饰单链DNA输出,并通过光电信号转换自动识别。仿真实验和生物实验证明了基于链置换的分子神经网络可以出色地完成印刷体汉字数字识别的任务。  相似文献   

5.
应用分子梳技术对DNA单分子的研究   总被引:2,自引:0,他引:2  
分子梳技术是一种有效的拉伸DNA分子的手段,它利用流体流动过程中施加的力将DNA分子拉伸开并且平铺在固体表面上.在每个玻片上可以同时对很多DNA分子拉伸并且整齐地排列,使之便于统计分析数据.利用分子梳技术可以在单分子水平上研究DNA复制、转录过程以及DNA-蛋白质相互作用.文中主要介绍分子梳技术原理、实现方法及其重要应用.  相似文献   

6.
DNA分子技术为生物种内和种间的比较及遗传多样性提供了一种崭新而又行之有效的途径。简要介绍了Southerm杂交、RFLP、PCR、小卫星和微卫星技术、RAPD、原位PCR和DNA测序等几种DNA分子技术及其在鱼类种质资源研究中的应用情况。概述了我国分子水平上的鱼类种质资源研究现状和进展。  相似文献   

7.
第二代居民身份证防伪特征的研究   总被引:2,自引:0,他引:2  
第二代居民身份证的制作过程中应用了多种防伪技术,其中包括数字防伪技术、射频识别技术和印刷防伪技术,使得制作出的身份证具有不同的防伪特征。印刷防伪技术包括:版纹防伪技术(接线印刷技术和缩微文字印刷技术)、紫外荧光油墨印刷技术、光变油墨印刷技术和微透镜微图形组合薄膜技术。  相似文献   

8.
DNA分子标记是DNA水平上遗传变异的直接反映,随机扩增多态性DNA(RAPD)技术,是新发展起来的一种DNA分子标记方法。文中详细阐述了RAPD技术的原理,进一步与限制性片段长度多态性(Restriction FragmentLength Polmorphism,RFLP)技术相比,得出它具有快速,简便和对材料要求不高等特点,最后讨论了RAPD技术在生命科学研究中各个方面的广泛应用,包括种基因组的分子谱图建、系统进化发育以及基因定位研究等。  相似文献   

9.
电码电话防伪工程是一项综合运用现代计算机信息技术、多媒体技术、通讯技术、数学理论和网络技术的高科技系统工程。它使产品防伪由利用高技术增加造假难度的一元防伪,跃升到了由防伪技术与查伪手段相结合的无法造假的二元防伪;走出了单向辨识、专家型防伪的老思路,使消费者、经销商、名优厂家的权益得到了切实有效的保护。因而成为当今防伪行业具有划时代意义的一场革命。 电码电话防伪属我国首创,是目前世界上最先进的防伪技术。它采用的是密码防伪的办法,即在防伪标志上隐藏一组密码,当消费者撕开(或刮开)防伪标志,就可看到这组密码,然后拨通查询电话,键  相似文献   

10.
李荣 《科技咨询导报》2011,(19):126-126
企业为保护自己和消费者权益,在产品的包装印刷中采用不同的防伪技术打击和杜绝假冒产品。本文就包装印前设计防伪、材料防伪、印刷工艺防伪及智能防伪等防伪技术在包装印刷中的应用进行研究。  相似文献   

11.
Design of Queue for DNA-based Computer   总被引:1,自引:0,他引:1  
IntroductionThough the speed of computing becomes faster andthecapacity of memory becomes morei mmense , more complexproblems ,such as difficult NP-complete problems ,cannotbe solved by an electronic computer . Recently ,the idea ofusing natural systems for computational purpose has beenproposed. For example , the original work of DNA forcomputation was given out by Adleman in1994[1], whichgave an idea of the potential power of molecularcomputation. The computing with DNA is based on thehi…  相似文献   

12.
Mao C  LaBean TH  Relf JH  Seeman NC 《Nature》2000,407(6803):493-496
Recent work has demonstrated the self-assembly of designed periodic two-dimensional arrays composed of DNA tiles, in which the intermolecular contacts are directed by 'sticky' ends. In a mathematical context, aperiodic mosaics may be formed by the self-assembly of 'Wang' tiles, a process that emulates the operation of a Turing machine. Macroscopic self-assembly has been used to perform computations; there is also a logical equivalence between DNA sticky ends and Wang tile edges. This suggests that the self-assembly of DNA-based tiles could be used to perform DNA-based computation. Algorithmic aperiodic self-assembly requires greater fidelity than periodic self-assembly, because correct tiles must compete with partially correct tiles. Here we report a one-dimensional algorithmic self-assembly of DNA triple-crossover molecules that can be used to execute four steps of a logical (cumulative XOR) operation on a string of binary bits.  相似文献   

13.
本文建立了在人工神经网络中实现简单的线性分类功能的、感知机的DNA计算的自装配模型,该模型并行地实现了神经网络的学习过程,充分利用了DNA计算极度并行的特点.  相似文献   

14.
15.
Gene silencing conserved in plants and animals is mediated by mechanisms that involve sequence- specific RNA degradation[1,2]. Gene silencing has been proven to play an important role in the study of gene function. Recently, a procedure known as virus ind…  相似文献   

16.
For about three decades, DNA-based nanotechnology has been undergoing development as an assembly method for nanostructured materials. The DNA origami method pioneered by Rothemund paved the way for the formation of 3D structures using DNA self assembly. The origami approach uses a long scaffold strand as the input for the self assembly of a few hundred staple strands into desired shapes. Herein, we present a 3D origami "roller" (75 nm in length) designed using caDNAno software. This has the potential to be used as a template to assemble nanoparticles into different pre-defined shapes. The "roller" was characterized with agarose gel electrophoresis, atomic force microscopy (AFM) and transmission electron microscopy (TEM).  相似文献   

17.
Potential control of DNA self-assembly on gold electrode   总被引:1,自引:0,他引:1  
The self-assembly monolayer (SAM) was prepared with 2-aminoethanethiol (AET) on the gold electrode.A new approach based on potential was first used to control DNA self-assembly covalently onto the SAM with the activation of 1-ethyl-3(3-dimethylaminopropyl)-carbodiimide (EDC) and N-hydroxysulfosuccinimide (NHS). The influence of potential on DNA self-assembly was investigated by means of cyclic voltammetry (CV), AC impedance, Auger electron spectrometry (AES) and atomic force microscopy (AFM). The result proves that controlled potential can affect the course of DNA self-assembly. More negative potential can restrain the DNA self-assembly, while more positive potential can accelerate the DNA self-assembly, which is of great significance for the control of DNA self-assembly and will find wide application in the field of DNA-based devices.  相似文献   

18.
19.
With the progress of DNA computing, DNA- based cryptography becomes an emerging interdisciplinary research field. In this paper, we present a novel DNA cryptography that takes advantage of DNA self assembled structure. Making use of the toehold strands recognition and strand displacement, the bit-wise exclusive-or (XOR) operation is carried out to fulfill the information encryption and decryption in the form of a one-time-pad. The security of this system mainly comes from the physical isolation and specificity of DNA molecules. The system is con- structed by using complex DNA self-assembly, in which technique of fluorescent detection is utilized to implement the signal processing. In the proposed DNA cryptography, the XOR operation at each bit is carried out individually, thus the encryption and decryption process could be con- ducted in a massive, parallel way. This work may dem- onstrate that DNA cryptography has the great potential applications in the field of inRwmation security.  相似文献   

20.
The postgenomic era has seen an emergence of new applications of DNA manipulation technologies, including DNA-based molecular computing. Surface DNA computing has already been reported in a number of studies that,however, all employ different mechanisms other than automaton functions. Here we describe a programmable DNA surface-computing device as a Turing machine-like finite automaton. The laboratory automaton is primarily composed of DNA (inputs, output-detectors, transition molecules as software), DNA manipulating enzymes and buffer system that solve artificial computational problems autonomously. When fluoresceins were labeled in the 5‘ end of (-) strand of the input molecule, direct observation of all reaction intermediates along the time scale was made so that the dynamic process of DNA computing could be conveniently visualized. The features of this study are: (i) achievement of finite automaton functions by linearly programmed DNA computer operated on magnetic particle surface and (ii)direct detection of all DNA computing intermediates by capiilary electrophoresis. Since DNA computing has the massive parallelism and feasibility for automation, this achievement sets a basis for large-scale implications of DNA computing for functional genomics in the near future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号