共查询到13条相似文献,搜索用时 62 毫秒
1.
2.
提出了一种用于在高斯与非高斯混合有色噪声中进行谐波恢复的新方法。首先利用Hilbert变换将实数观测值变换成复数形式,然后应用一种特殊的高阶累计量识别非高斯噪声的AR参数并对含噪观测值进行预滤波后,再应用基于统计量的方法进行谐波恢复。文中提出的方法能够用来恢复高斯与非高斯混合有色噪声中的一维实数谐波信号,而不用考虑谐波信号是否存在相位耦合和非高斯噪声是否对称分布,仿真实验可以证明。 相似文献
3.
提出了一种新的混合滤波算法,对混有高斯和椒盐噪声的图像进行去噪处理.该算法首先对受椒盐噪声污染的像素点,采用自适应中值滤波算法进行去除;然后利用高阶统计量针对高斯噪声的不敏感特性,对受高斯噪声污染的像素点,采用其周围梯度和最小的几个点的灰度平均值来代替其灰度值去除噪声.实验结果表明,该算法能够在去除高斯和椒盐噪声的同时,保留更多的图像细节信息,特别是对感染较大噪声的图像有更好的去噪效果. 相似文献
4.
5.
针对混有高斯噪声和椒盐噪声的数字图像去噪,提出一种混合噪声滤波算法.首先判断滤波窗中心像素是否是噪声点,如果是噪声点,则取窗口内与其他像素灰度差值绝对值和最小的那个像素值作为噪声点的灰度值;否则,不改变当前像素值.通过实验分析比较,该算法能够在去除噪声的同时更大限度地保留图像的细节信息,并且由于算法在时域内进行,其运算... 相似文献
6.
主要针对在高斯白噪声背景下在信号与图像处理中,采用小波变换使图像去噪,对噪声的统计特性建模,对小波去噪的理论依据进行了深入分析。 相似文献
7.
由于通常的邻域运算会改变图像边缘点的灰度值,使图像的边缘变得模糊,为了改善这一现象,提出了一种基于引导图像的边缘噪声滤波算法。该算法由局部线性模型推导而来,将原始图像或其他变换形式定义为引导图像。通过对引导图像进行分析,并调节正则化参数,利用引导图像掩模对图像的边缘进行平滑处理,有效地去除了噪声。通过与其他四种常用的滤波算法进行对比实验,表明该算法的均方误差MSE仅为0.0015,峰值信噪比PSNR为28.26,远远优于其他四种常见滤波算法,不仅对图像进行了平滑去噪,在很大程度上还保护了图像的边缘信息。 相似文献
8.
噪声虽然降低了图像像素之间的相关程度,但是相关性仍然存在.本文以图像邻域像素块为出发点,运用图像邻域像素块之间的相关性分析图像的能量分布,进一步挖掘图像能量分布的特征向量,运用特征向量重构图像达到去除噪声的目的.本文挖掘的特征向量与邻域像素个数、像素块之间的相关性和特征向量的选取有关,从实验上讨论了这三个因素对去噪的影... 相似文献
9.
针对视频图像在同时受到高斯噪声和脉冲噪声污染时,严重影响图像的存储、 编解码、 传输、 目标识别与跟踪的问题, 提出一种图像去噪的混合滤波方法。该方法通过基于个数判断脉冲噪声的方法, 将脉冲噪声从混合噪声中分离, 并利用中值滤波将其过滤; 再利用分块平均边缘检测的方法提取图像的边缘; 利用自适应均值滤波方法滤除非边缘的高斯噪声, 并将边缘图像嵌入滤除高斯噪声的图像中。实验结果表明, 该方法不但能有效去除图像中的高斯噪声和脉冲噪声, 而且能保持图像的边缘信息, 从而提高图像的去噪效果和清晰度。 相似文献
10.
王旭升 《安庆师范学院学报(自然科学版)》2013,(4):62-65
本文提出了一种基于贝叶斯最大后验概率估计(Bayesian MAP)的图像去噪方法。通过 Matlab软件仿真,对均值滤波、中值滤波、小波阈值去噪和本文提出的图像去噪方法进行分析比较。实验表明:本文提出的方法根据图像和噪声的特点,在小波变换之后,对其中的高频系数进行贝叶斯最大后验概率估计,比其他几种图像去噪方法更能提高去噪后图像的峰值信噪比,更好地保留了图像的细节特征,取得了较好的视觉效果。 相似文献
11.
提出了一种基于高斯比例混合模型的图像Curvelet域去噪算法,改善了图像的去噪效果.首先对图像进行Curvelet变换.然后建立系数邻域的高斯比例混合模型.最后在模型基础上用贝叶斯最小二乘估计方法对系数进行估计.算法有效结合了Curvelet变换对图像边缘的高效表示能力和高斯比例混合模型对邻域系数相关性的概括能力.实验结果表明,在主观视觉上.该算法对图像边缘进行了很好的保护;在峰值信噪L-'c上较其他算法也有所改善;特别是对纹理细节比较丰富的图像.去噪效果更加明显. 相似文献
12.
提出了一种基于自适应高斯混合模型(Gaussian mixture model)的运动滤波器的图像稳定方法.首先采用多分辨力金字塔技术,通过特征跟踪进行运动估计;然后分析前n帧图像的统计特征,求取GMM参数;最后利用GMM运动滤波器对运动参数进行滤波,输出稳定的图像序列.实验结果表明,该方法对于图像的不规则运动的参数补偿是有效的,并且可以实现实时处理. 相似文献
13.
针对一类具有纹理特征的医学图像,提出一种结合纹理信息,利用遗传神经网络的图像分割方法。该方法以混合递阶遗传算法优化径向基神经网络,同时优化其结构及参数。试验表明,该方法应用于生物医学图像,能够区分图像不同的纹理区域,获得较好的分割效果。 相似文献