共查询到19条相似文献,搜索用时 82 毫秒
1.
采用煤基氢冶金工艺对富铁镍渣中的铁组元进行高效还原,研究了不同温度下镍渣球团等温还原过程金属化率变化规律,利用粒子模型和未反应核模型对镍渣球团的煤基氢还原动力学过程进行分析讨论,明确了各反应阶段的控制环节并建立了相应动力学方程.研究表明:以高挥发分煤为还原介质,掺煤镍渣球团在1 300℃还原焙烧20 min的金属化率可达90.2%;球团还原过程可分为反应初期、中期和后期3个阶段,其反应动力学分别受界面化学反应控制、反应-扩散混合控制和内扩散控制,反应表观活化能(Ea)分别为1 74.01、124.15、83.14 kJ/mol. 相似文献
2.
针对转底炉处理红土镍矿生产镍珠铁的可行性进行研究。通过控制温度和炉渣高温特性,使炉渣形成半熔融状态,还原后的金属产生聚集和长大,形成含镍铁珠。讨论还原温度、炉渣成分、耐火材料、还原剂配比、球团直径及还原剂种类对生产镍珠铁的影响。研究结果表明:当还原温度为1 400℃,还原时间为30 min,SiO2-MgO-CaO三元渣系中CaO的质量分数为15%,球团直径为30 mm时,采用石墨坩埚,可以得到Ni质量分数为11.53%,Fe质量分数为84.16%的镍珠铁,此时,Ni的回收率可以达到98.59%,Fe的回收率为73.27%。 相似文献
3.
提出了一种两步三段式厚渣层铁浴熔融还原炼铁工艺,铁浴炉利用厚渣层保证反应器内球团矿的氧化区氧化放热与还原区还原的梯度隔离,煤气改质炉提高煤气利用率,转底炉预还原匹配整个系统能耗最低.依据物料平衡与能量平衡的原理,建立了该工艺的静态模型,依据设定的工艺流程中各个环节的生产指标,掌握了各个环节的物料消耗与能量消耗情况,并与现阶段各种炼铁工艺进行了对比,阐明了本工艺的特点与优势,为该工艺的生产实践提供了参考. 相似文献
4.
通过化学成分、光学显微镜、X射线衍射、扫描电镜能谱分析等测试手段,分析了镍沉降渣矿物成分和嵌布特点和沉降渣深度还原过程中物相的转变特征,结果表明,渣的物相由铁镁橄榄石和玻璃质组成.渣中主要有用成分铜镍铁硫化物嵌布粒度微细,分布无规律,回收困难.经深度还原,沉降渣逐渐转变为镁黄长石、含镍金属铁、辉石、钙霞石、钠闪石、石英等新的矿物成分,加热至1300℃,还原产物物相组成稳定,镁黄长石和含镍金属铁相对含量最高.还原时间也是影响还原效果重要因素,含镍金属铁相对含量随还原时间的增加而增长,120 min时相对含量最高.热力学分析表明,镍沉降渣深度还原过程中主要发生的反应为铁镁橄榄石与氧化钙作用生成镁黄长石和FeO,FeO被C和CO还原为金属铁.金属硫化物与CaO和C通过氧化还原作用,生成的金属铜和镍溶于金属铁中,产生的CaS与硅酸盐一起析出. 相似文献
5.
非接触式熔融还原法连续制备铁镍合金 总被引:1,自引:0,他引:1
以金川渣中含有的镍、铁有价金属元素为研究对象,利用非接触式熔融还原法,采用连续分段加料的方式,探讨了熔渣中铁镍氧化物的还原规律和氧离子渗透膜的传导特征.实验结果表明:利用液态银作为引导阴极,可以得到无碳铁镍合金;采用连续式分段加料,可以提高铁镍氧化物的还原速率;增加铁镍氧化物中NiO比例,有助于增加还原前期的还原速率,减少还原后期的还原时间.另外,升高还原温度,可以提高铁镍氧化物的还原速率;但是,随着温度升高,通过外电路的电量减少. 相似文献
6.
结合富铌渣多元共生复合的特点,综合比较各种铌资源提取分离的手段,提出采取熔融氧化物电解方法,实现富铌渣中铌、铁元素电化学选择性还原和分离。从理论上分析富铌渣电化学选择性提取铌资源的可行性,计算电化学还原过程中相关反应的Gibbs自由能变化及各氧化物的理论分解电压,讨论可能存在的化学反应及其优先程度,分析电化学过程可能的产物。结果表明:富铌渣电化学选择性提取铌资源是可行的;通过确立适宜的物理化学条件和电化学参数,可实现富铌渣中铌资源的选择性提取分离。熔融氧化物电解提取金属具有流程短、能耗低、污染小等特点,从而为开发绿色环保、高效低耗的铌资源提取技术提供新思路。 相似文献
7.
在硫酸溶液中,使用常压氧化浸出法处理镍钼矿提钼渣以回收有价金属镍。考察搅拌速度、液固比、硫酸用量、氧化剂用量以及浸出时间对镍浸出过程的影响。试验结果表明:搅拌速度与液固比对浸出过程影响不明显;在未加入氧化剂时,主要发生镍氢氧化物简单的酸溶反应,而添加氧化剂后硫化物也被氧化浸出;此外,镍浸出率随浸出时间、温度及硫酸用量的增加而增大。最佳工艺条件如下:搅拌速度为500 r/min,液固比为4:1,氧化剂加入量为矿量的0.2倍,浸出温度为90℃,硫酸浓度为0.4 mol/L,浸出时间为8 h,镍浸出率可达95%左右。 相似文献
8.
为使莱钢高炉冶炼中具有合理渣系,保障高炉长期稳定运行,对其炉渣二元碱度及MgO、Al2O3、FeO含量对炉渣黏度的影响进行研究。结果表明,为保证较低的黏度,高炉渣保持二元碱度约为1.15、w(MgO)为8%~10%较适宜;当高炉渣Al2O3含量达到一定值时,其黏度会明显提高,高炉渣中Al2O3含量最好应控制在15%以内;高炉渣黏度随着FeO含量的增加而显著降低,初渣中较高FeO含量可改善其流动性能。 相似文献
9.
转炉铬矿熔融还原法不锈钢直接合金化的研究进展 总被引:1,自引:0,他引:1
在介绍了转炉用铁水冶炼不锈钢工艺技术的基础上,论述了铬矿熔融还原工艺的研究现状,指出目前在转炉铬矿熔融还原法不锈钢直接合金化工艺的研究工作中存在的主要问题包括:对铬矿在渣中溶解行为的研究报道较少,目前为止,尚未对熔融还原机理达成一致观点,研究成果的应用具有局限性以及对于铬矿熔融还原过程反应动力学模型的研究很少.因此,加强铬矿熔融还原工艺的研究和推广工作,使我国早日实现转炉熔融还原直接冶炼不锈钢的工业化生产,将对推动我国和世界不锈钢产业快速发展具有十分重要的战略意义. 相似文献
10.
基于硫酸选择性溶出钴镍渣中金属锌的“腐蚀微电池”作用本质,推导了其溶出反应的动力学方程.建立了钴镍渣中金属锌溶出反应的实验装置,获取了反应温度为15℃时溶出的氢气体积随时间变化的数据.以所建立的动力学方程结合实验数据进行计算,结果表明,硫酸选择性溶出钴镍渣中金属锌并生成氢气的反应,在室温15℃条件下具有一级反应的动力学特征,其表观反应速率常数k*=0.5617min^-1. 相似文献
11.
红土镍矿含碳球团深还原-磁选富集镍铁工艺 总被引:3,自引:1,他引:3
以红土镍矿为原料,利用深还原工艺将镍和铁由其矿物还原成金属镍和铁,再通过磁选分离富集得到高品位的镍铁精矿.对深还原焙烧工艺参数进行了优化,得到最佳的工艺条件如下:内配碳量(C/O原子比)为1.3,还原时间为80 min,CaO质量分数为10%,还原温度为1300℃.在此条件下得到的镍铁精矿中镍品位为5.17%,全铁品位为65.38%,镍和铁的回收率分别为89.29%和91.06%.利用X射线衍射(XRD)、扫描电镜(SEM)及能谱分析(EDS)对深还原矿及磁选后的镍铁精矿进行了分析,发现深还原矿中出现金属粒,为Ni--Fe合金,镍全部溶于镍铁合金中,铁还有少部分以FeO的形式存在;磁选过程除去大量的脉石,精矿中主要物相为Fe、Ni--Fe、FeO及少量的CaO.MgO.2SiO2. 相似文献
12.
钨渣中有价金属综合回收工艺 总被引:2,自引:0,他引:2
对从钨渣中回收钽、铌的工艺进行了研究;采用苏打焙烧水浸与酸浸结合的湿法处理,经实验确定了最佳工艺条件:苏打用量为理论量的6.0倍,焙烧温度为850~950℃,焙烧时间为50 min.水浸液固比为6:1,时间为90 min;酸煮时HCl浓度为20%,浸出液固比为6:1,时间为60min.按照以上条件处理钨渣,可获得含Ta2O5+Nb2O5达15.89%(其中w(Ta2O5)为4.06%)的钽铌富集渣,钽铌回收率达79.46%.该工艺既可完善我国现行的钨冶金流程,充分利用自然资源,获得可直接应用的钽铌生产原料.又可减少大量钨渣堆存引起的环境污染问题. 相似文献
13.
金川镍弃渣铁资源回收综合利用 总被引:4,自引:0,他引:4
针对金川镍弃渣的特点,采用深度还原-磁选工艺,对其进行铁资源回收的综合利用实验研究,获得了铁品位为89.84%,铁回收率达93.21%的铁精矿. 探讨了还原温度、还原时间、二元碱度、磨矿细度和磁场强度等不同实验条件对产品指标和分离效果的影响. 通过X射线衍射分析、光学显微分析、SEM分析、化学分析等手段确定了镍弃渣与铁精矿的物相组成和特点. 相似文献
14.
对某镍冶金渣(铁含量接近50%)进行工艺矿物学及选择性絮凝-磁选研究。工艺矿物学研究结果表明:该渣中主要含铁矿物(磁铁矿)的嵌布粒度细小,且部分以微细包裹体形态分布于成分复杂的铁质玻璃体中,采用常规磁选工艺无法有效回收。选择性絮凝-磁选结果表明:在油酸用量为0.8kg/t、碳酸钠用量为2kg/t及磁感应强度为0.20T的条件下,可获得铁品位为56.68%,回收率为81.72%的磁铁精矿。与常规磁选工艺相比,磁铁精矿品位提高3%,回收率提高5%。 相似文献
15.
从低品位红土镍矿中高效回收镍铁 总被引:4,自引:1,他引:4
以低品位红土镍矿(w(Ni)=1.52%,w(Fe)=14.08%)为原料,采用一步还原焙烧-磁选工艺制取镍铁合金。考察反应温度、反应时间、还原煤量和复合添加剂对红土镍矿焙烧效果的影响。研究结果表明:在还原煤为20%、复合添加剂为12%、焙烧温度为1 200℃、通N2保护条件下焙烧180 min,原矿中的大部分氧化镍和少量氧化铁得到选择性还原;焙砂水淬急冷后常规磁选,得到Ni质量分数为10.74%,Fe与Ni的质量分数之比为4.5,Ni回收率为86.23%的镍铁精矿,达到从红土镍矿中高效回收镍铁的目的。 相似文献
16.
硫酸熟化-焙烧法从镍红土矿中回收镍和钴动力学研究 总被引:2,自引:0,他引:2
采用X线荧光(XRF)、X线衍射(XRD)、扫描电镜(SEM)等手段对镍红土矿的化学组成、物相组织、显微结构以及镍钴赋存状态进行矿物学表征.通过硫酸熟化-焙烧-水浸法从镍红土矿中提取镍和钴,并研究镍和钴在硫酸熟化-焙烧过程中的动力学.结果表明:镍和钴的硫酸化过程符合Bagdasarym提出的多相液固区域反应模型,相应的动力学方程式可以用ln(-ln(1-α)=ln k+nln t(其中,α为反应进行程度,k为反应速率常数,t为反应时间,n为矿物中晶粒性质和几何形状的函数)来表示,镍和钴的硫酸化反应表观活化能分别为21.45 kO/mol和34.81kJ/mol,动力学控制过程为内扩散控制. 相似文献
17.
Recovery of iron and calcium aluminate slag from high-ferrous bauxite by high-temperature reduction and smelting process 下载免费PDF全文
A high-temperature reduction and smelting process was used to recover iron and calcium aluminate slag from high-ferrous bauxite. The effects of w(CaO)/w(SiO2) ratio, anthracite ratio, and reduction temperature and time on the recovery and size of iron nuggets and on the Al2O3 grade of the calcium aluminate slag were investigated through thermodynamic calculations and experiments. The optimized process conditions were the bauxite/anthracite/slaked lime weight ratio of 100:16.17:59.37, reduction temperature of 1450°C and reduction time of 20 min. Under these conditions, high-quality iron nuggets and calcium aluminate slag were obtained. The largest size and the highest recovery rate of iron nuggets were 11.42 mm and 92.79wt%, respectively. The calcium aluminate slag mainly comprised Ca2SiO4 and Ca12Al14O33, with small amounts of FeAl2O4, CaAl2O4, and Ca2Al2SiO7. 相似文献
18.
红土镍矿镍和铁的综合回收试验 总被引:1,自引:0,他引:1
多米尼加某红土镍矿属强烈氧化的含镍酸性铁矿石,矿石中主要含有褐铁矿、石英、氧化铝和氧化镁等矿物.采用硫酸常压浸出-黄钠铁矾沉铁工艺对该红土镍矿进行湿法回收工艺研究.研究结果表明:镍、铁的浸出率分别为91.95%和67.96%;经黄钠铁矾法沉淀分离和焙烧工艺能够获得Fe品位为55.56%的氧化铁产品,且镍和铁的总回收率分别达到89.39%和67.46%. 相似文献
19.
试验选取生产现场的高炉炉渣作为基准原料,对现场高炉炉渣和高炉初渣的化学成分、矿物组成、矿物结构以及粘度和熔化性温度进行了测定和系统研究。 相似文献