首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
本文从理论的角度,对高能气体压裂用液体火药的组分,氧化剂与燃烧剂以及水的比例进行理论计算,应用内能法对氧化剂、燃烧剂及配方进行计算、筛选,讨论了水含量对液体火药能量的影响,指出水含量以20%~30%为宜,从而优选出了合理的液体火药配方.  相似文献   

2.
燃爆诱导酸化压裂在川西气井中的先导试验   总被引:2,自引:0,他引:2  
针对在川西深层致密气藏压裂过程中出现的破裂压力异常高、措施效果不明显、有效期短等问题,提出了燃爆诱导酸化压裂技术.为确定燃爆压裂合理火药量,通过理论分析建立了燃爆压裂设计中高加压速率下岩层破坏强度分析模型和非均匀地应力条件下套管极限抗内压计算模型,并对川高561井进行了燃爆诱导酸化压裂的方案设计和现场试验.结果表明:燃爆诱导压裂可有效降低地层破裂压力,酸预处理可进一步改善近井地带渗流通道;燃爆诱导酸化压裂复合技术可有效解决深层致密气藏无法压裂投产的问题,并能大幅度提高此类气藏的单井产能.  相似文献   

3.
针对单级火药爆燃速度单一、延迟点燃连接装置稳定性欠佳的问题,提出高低燃速火药串联装配、中心管同步点燃新型工艺,进而基于不同爆燃速度火药的燃速方程,借助火药结构几何模型、质量守恒方程、能量守恒方程和气体状态方程建立多级脉冲组合火药爆燃加载模型,据此定量计算不同比例组合火药爆燃加载压力与时间的动态变化。结果表明:组装火药可有效协同高低燃速火药爆燃加载优势,既可用少量高燃速火药迅速产生高压破裂储层,又不会产生过大峰值压力破坏套管,同时又能利用大剂量低燃速火药长时有效延伸裂缝;在确保迅速破裂储层基础上,尽量减少高速火药量、增加低速火药量,以便建立施工安全和措施效果的有效平衡,同时可在套管安全的前提下扩大整体装药量,提高措施效果。  相似文献   

4.
高能气体压裂的压力—时间过程决定了所形成的裂缝几何形态和对套管及水泥环的破坏程度,而火药的燃烧规律和流体通过射孔孔眼的泄流规律是影响压力过程的两个决定性因素。本文基于火药平行层燃烧规律及泄气条件对密闭容器压力公式进行了修正,用因次分析法导出了泄流规律的形式,并将火药燃烧与孔眼泄流结合起来逐步计算瞬时压力过程。通过对数值计算结果的分析讨论,为高能气体压裂装药设计提供理论依据。  相似文献   

5.
本文回顾了可控脉冲压裂(CPF)技术的发展过程,概述了该技术的应用范围,通过对大量事实的分析研究,说明该技术是在压裂机理研究,装药技术提高,装药性能改进的基础上,适应油气资源开发和经济建设的需要,经过十余年的试验研究而发展起来的;尽管它不能代替水力压裂,可以解决水力压裂和酸化所不能解决的许多难题,在酸化和水力压裂予处理、选择性压裂、近水层开采、油气藏分析、提高吸水能力、清理射孔、完井、薄层开发等方面有广泛用途,可单独使用,也可与其他压裂技术配合使用,是尚处于发展阶段颇有前途的一项压裂技术。  相似文献   

6.
总结了近10年来燃速催化剂在固体推进剂中的应用研究现状,指出了燃速催化剂研究的发展方向以及纳米燃速催化剂在固体推进剂中的应用前景。  相似文献   

7.
测试了加入不同粒度AP、不同品种催化剂的推进剂的燃速和加入不同降感材料的推进剂的机械感度,分析了影响AP/CMDB推进剂燃烧性能和机械感度的主要影响因素。结果表明,AP粒度是影响AP/CMDB推进剂燃速的主要因素,加入纳米催化剂与某含铜化合物复配能进一步提高燃速,燃速压强指数不提高;推进剂中含能材料的比例和材料颗粒形貌对推进剂机械感度有明显影响,采用某低感增塑剂部分代替NG并加入某高导热碳基材料进行协同降感,能明显降低AP/CMDB推进剂的摩擦感度和撞击感度。  相似文献   

8.
脉冲高能气体压裂是针对不同井况和地层,利用压裂弹燃速的差异性,设计组合压裂弹分级燃烧,实现与井况和地层相匹配的压力加载过程,达到精细化施工的目的,以取得较优的压裂效果。介绍了根据X井地质资料及油井数据,进行脉冲高能气体压裂优化设计、施工和所取得的压裂增油效果。  相似文献   

9.
10.
对多脉冲高能气体压裂—二氧化氯复合解堵的作用机理进行了研究 ,该技术是在多脉冲高能气体压裂产生多条裂缝的同时 ,用二氧化氯解堵剂进一步解除因压裂液、碳酸钙和硫化亚铁等酸溶性垢、铁细菌、硫酸盐还原菌的代谢产物等对地层的堵塞 ,以达到最大限度地增强油气层导流能力 .现场试验表明这项油层改造技术对提高油气井的产量是可行的  相似文献   

11.
容器内烃类气体燃爆温度与压力的数值解   总被引:5,自引:0,他引:5  
对于压力容器内的烃类气体与空气的混合物,按球面逐层绝热燃烧模型,编制了电算程序DU TGB1,在不同初始条件下计算了13种烃类气体的燃烧温度与爆炸压力,用本文实验值及文献值与之比较,燃烧温度的计算偏差为11.4%~17.6%;爆炸压力的计算偏差为-9.09%~10.16%;其中烯烃、烷烃爆炸压力的计算偏差为-5.51%~8.84%.  相似文献   

12.
针对高能气体压裂中合理火药质量范围难确定的问题,分别利用不同加载条件下的岩石动态损伤模拟试验和对强内压下射孔套管径向位移、周向应力的理论研究,建立既能确保压裂储层岩石又不会破坏套管的极限压力计算模型;结合已有火药爆燃加载模型和压挡液柱运动模型,组建极限装药量耦合动力学模型,进而推导耦合数值求解方法;在此基础上分别研究火药弹装药结构和压挡液柱高度对极限火药质量的影响。应用结果表明,11次现场高能气体压裂施工中无破坏套管井例,8次作业措施有效,达到预期效果。  相似文献   

13.
定向水力压裂技术研究与应用   总被引:1,自引:0,他引:1  
针对煤矿井下实施水力压裂措施后增透方向不确定导致应力集中的问题,提出了定向孔定向水力压裂技术.介绍了定向水力压裂的必要性及当前研究现状,分析了定向孔定向作用机理,确定了定向孔的布置位置、间距等参数.利用数值模拟软件验证了定向孔的导向控制效果.分析结果表明:在压裂孔连心线上布置定向孔.定向孔与压裂孔间距为3~4m时,定向孔起到了辅助自由面的作用,对压裂产生的裂隙具有导向和加速扩展的作用.定向孔诱导裂隙从压裂孔周围向定向孔方向发展,进而促使压裂孔之间实现贯通,消除了应力集中,达到了整体卸压增透的效果.现场实施穿层定向水力压裂后,工作面瓦斯突出危险性指标q值、S值减小,变化幅度降低,掘进速度提高了69%,实现了安全生产.  相似文献   

14.
注液速率及压裂液黏度对煤层水力裂缝形态的影响   总被引:2,自引:1,他引:2  
注液速率及压裂液黏度是煤层气井压裂设计中两个重要的可控参数,其不仅影响水力裂缝起裂压力及压裂施工压力,而且控制水力裂缝形态。采用鄂尔多斯盆地东南缘大宁-吉县地区天然煤岩,基于试验室物理模拟试验研究注液速率及压裂液黏度对水力裂缝形态及施工压力的影响。结果表明:注液速率及压裂液黏度较小时,主裂缝与分支缝连通形成沿最大水平主应力方向的复杂裂缝网络系统;随着注液速率及压裂液黏度的增加,水力裂缝复杂程度降低,形成平直单裂缝。提高注液速率或压裂液黏度会增大施工压力。对注液速率及压裂液黏度进行合理控制,可先在井筒附近生成平直裂缝,后在远离井筒处生成复杂裂缝网络,有利于增大煤层气单井排采体积。  相似文献   

15.
辛普森公式的推广形式及应用   总被引:1,自引:0,他引:1  
鉴于当前常用数值积分方法的不足,以及直角坐标系下辛普森公式的局限性,研究并提出了辛普森公式在三维柱坐标系和球坐标系下的推广形式,并将其应用于地球物理测井中自然伽马射线强度函数数值积分运算。  相似文献   

16.
随着转向压裂技术的广泛应用,在该技术中起重要作用的暂堵剂也有很大的发展。然而解堵后暂堵剂难以完全溶于返排流体中,由此引起的地层伤害问题在暂堵剂的使用中一直难以消除,影响着储层的可持续开发。因此,结合暂堵剂的国内外研究现状,根据解堵方式的不同将暂堵剂分成酸溶性、水溶性和油溶性三类,对其应用、暂堵机理、优缺点、地层伤害情况及发展趋势等方面进行了综述。认为残渣量小、封堵强度高的水溶性暂堵剂是未来研究重点,其中具有自清洁性的可降解暂堵剂也是有潜力的发展方向。  相似文献   

17.
基于复合断裂力学解析方法和能量平衡原理,考虑非常规油气储层岩石高脆性和低渗透性特点,研究水平井分段压裂诱导裂缝间应力相互干扰条件下裂缝扩展的力学机制和缝内变密度支撑剂运移规律。根据水力压裂裂缝扩展的拟三维模型和考虑缝内流体沿缝长、缝高二维流动的全三维模型,分别考虑水平井单井缝网压裂和双井同步压裂形成网状裂缝状态,建立考虑缝间应力干扰的诱导网状裂缝体积压裂优化设计模型,采用Visual Studio 2012开发平台,研制设计软件3D-UGMulti-Fracture。根据断裂力学和渗流力学原理研究水力压裂过程中不同密度支撑剂在网状裂缝内的运移过程。利用微地震技术对同步压裂井实施裂缝监测,检测结果与软件计算结果具有很好的一致性。按照压裂工艺设计要求,优化排液量和砂比等参数,增加裂缝有效支撑长度,提高裂缝导流能力。  相似文献   

18.
超高速窄脉冲信号采集这一新的现代高科技技术是各种光电跟踪系统中(如雷达设备、激光接收机等)的关键技术之一。要求实现对超高速窄脉冲信号的放大、展宽及幅度输出的实时控制,并使其具有宽带增益,大范围线性动态接收能力,满足信号响应快,采集精度高,工作性能稳定可靠。  相似文献   

19.
求出了Bloch 方程在各种条件下完整的解析解,并将其应用到特形脉冲的模拟实验中,得出了一些有益的结论,相应实验的结果与这些结论基本吻合。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号