首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Muscle contraction is driven by the motor protein myosin II, which binds transiently to an actin filament, generates a unitary filament displacement or 'working stroke', then detaches and repeats the cycle. The stroke size has been measured previously using isolated myosin II molecules at low load, with rather variable results, but not at the higher loads that the motor works against during muscle contraction. Here we used a novel X-ray-interference technique to measure the working stroke of myosin II at constant load in an intact muscle cell, preserving the native structure and function of the motor. We show that the stroke is smaller and slower at higher load. The stroke size at low load is likely to be set by a structural limit; at higher loads, the motor detaches from actin before reaching this limit. The load dependence of the myosin II stroke is the primary molecular determinant of the mechanical performance and efficiency of skeletal muscle.  相似文献   

2.
J A Spudich  S J Kron  M P Sheetz 《Nature》1985,315(6020):584-586
Although the biochemical properties of the actin/myosin interaction have been studied extensively using actin activation of myosin ATPase as an assay, until recently no well-defined assay has been available to measure the mechanical properties of ATP-dependent movement of myosin along actin filaments. The first direct measurements of the rate of myosin movement in vitro used a naturally occurring, biochemically ill-defined array of actin filaments from the alga Nitella. We report here the construction of an oriented array of filaments reconstituted from purified muscle actin and the use of this array in a biochemically defined quantitative assay for the directed movement of myosin-coated polystyrene beads. We demonstrate for the first time that actin alone, linked to a substratum by a protein anchor, is sufficient to support movement of myosin at rates consistent with the speeds of muscle contraction and other forms of cell motility.  相似文献   

3.
Myosin phosphorylation plays an important part in excitation--contraction coupling in smooth muscle. Phosphorylation by a Ca2+, calmodulin-dependent kinase stimulates the actin-activated Mg2+-ATPase activity of smooth muscle myosin, suggesting that myosin phosphorylation regulates smooth muscle contraction. This hypothesis is supported by evidence that myosin is phosphorylated during contraction and dephosphorylated during relaxation of intact smooth muscles stimulated with a single agonist concentration. However, there is little information regarding the response to stimulation with various agonist concentrations. As the dose-response relationships for phosphorylation and tension should be similar if myosin phosphorylation does, in fact, regulate smooth muscle contraction, we studied myosin phosphorylation in tracheal smooth muscle stimulated with a broad range of concentrations of the cholinergic agonist, methacholine. The results of these experiments are consistent with the hypothesis that myosin phosphorylation regulates smooth muscle contraction but they indicate a relatively complex relationship between myosin phosphorylation and the generation of isometric tension.  相似文献   

4.
S Tsukita  M Yano 《Nature》1985,317(6033):182-184
It is now widely accepted that the ATP-induced active sliding of adjacent thin and thick filaments mediated by myosin heads (cross-bridges) is responsible for muscle contraction. Despite intensive studies, the behaviour of the myosin heads during muscle contraction is still unclear. Recent progress in the rapid freezing electron microscope technique has greatly improved the temporal resolution of the images that can be obtained. Here, we report a new type of actomyosin structure captured by rapid freezing. We have analysed images from thin sections of freeze-substituted rabbit skeletal muscle rapidly frozen during isometric contraction. For comparison, we also studied relaxed and rigor muscles. Our results show that, during isometric contraction, most myosin heads are regularly arrayed along the helix of the actin filaments and that this actomyosin structure appears to be distinct from that observed in rigor muscle.  相似文献   

5.
I Matsubara  N Yagi  H Miura  M Ozeki  T Izumi 《Nature》1984,312(5993):471-473
According to the cross-bridge model of muscle contraction, an interaction of myosin heads with interdigitating actin filaments produces tension. Although X-ray equatorial diffraction patterns of active (contracting) muscle show that the heads are in the vicinity of the actin filaments, structural proof of actual attachment of heads to actin during contraction has been elusive. We show here that during contraction of frog skeletal muscle, the 5.9-nm layer line arising from the genetic helix of actin is intensified by as much as 56% of the change which occurs when muscle enters rigor, using a two-dimensional X-ray detector. This provides strong structural evidence that myosin heads do in fact attach during contraction.  相似文献   

6.
Alteration in crossbridge kinetics caused by mutations in actin   总被引:6,自引:0,他引:6  
D R Drummond  M Peckham  J C Sparrow  D C White 《Nature》1990,348(6300):440-442
The generation of force during muscle contraction results from the interaction of myosin and actin. The kinetics of this force generation vary between different muscle types and within the same muscle type in different species. Most attention has focused on the role of myosin isoforms in determining these differences. The role of actin isoforms has received little attention, largely because of the lack of a suitable cell type in which the myosin isoform remains constant yet the actin isoforms vary. An alternative approach would be to examine the effect of actin mutations, however, most of these cause such gross disruption of muscle structure that mechanical measurements are impossible. We have now identified two actin mutations which, despite involving conserved amino acids, can assemble into virtually normal myofibrils. These amino-acid changes in actin significantly affect the kinetics of force generation by muscle fibres. One of the mutations is not in the putative myosin-binding site, demonstrating the importance of long-range effects of amino acids on actin function.  相似文献   

7.
T Itoh  M Ikebe  G J Kargacin  D J Hartshorne  B E Kemp  F S Fay 《Nature》1989,338(6211):164-167
Phosphorylation of myosin light chains by a calmodulin-myosin light-chain kinase (MLCK) pathway is considered to be responsible for coupling increased calcium concentration with contraction in smooth muscle. This simple view has, however, recently been questioned. To test this hypothesis directly, we microinjected individual smooth muscle cells with modulators of the MLCK pathway while measuring contraction and calcium-ion concentration. Injection of a constitutively active proteolyzed form of MLCK causes contraction but no change in calcium concentration. By contrast, injection of peptide inhibitors of MLCK blocks contraction in response to K+ depolarization, despite the fact that the change in calcium concentration in response to stimulation was enhanced over controls. These results provide a direct demonstration at the level of a single cell that activation of the calmodulin-MLCK pathway is both necessary and sufficient to trigger contraction of smooth muscle.  相似文献   

8.
A Kishino  T Yanagida 《Nature》1988,334(6177):74-76
Single actin filaments (approximately 7 nm in diameter) labelled with fluorescent phalloidin can be clearly seen by video-fluorescence microscopy. This technique has been used to observe motions of single filaments in solution and in several in vitro movement assays. In a further development of the technique, we report here a method to catch and manipulate a single actin filament (F-actin) by glass microneedles under conditions in which external force on the filament can be applied and measured. Using this method, we directly measured the tensile strength of a filament (the force necessary to break the bond between two actin monomers) and the force required for a filament to be moved by myosin or its proteolytic fragment bound to a glass surface in the presence of ATP. The first result shows that the tensile strength of the F-actin-phalloidin complex is comparable with the average force exerted on a single thin filament in muscle fibres during isometric contraction. This force is increased only slightly by tropomyosin. The second measurement shows that the myosin head (subfragment-1) can produce the same ATP-dependent force as intact myosin. The magnitude of this force is comparable with that produced by each head of myosin in muscle during isometric contraction.  相似文献   

9.
目的:探索运动训练对大鼠骨骼肌收缩蛋白的影响,为进一步研究其蛋白水平提供依据。方法:选用清洁级健康雄性Sprague-Dawley(SD)大鼠20只,6周龄,体重135-150g,随机分为2组。A:安静对照组,n=10,B:运动训练组,n=10。运动训练组:进行持续性大运动量跑台训练8周。实验使用SDS-PAGE(十二烷基硫酸钠-聚丙烯凝胶电泳),浓缩胶浓度5%,分离胶浓度10%,电泳电压160V,时间200min。结果:在骨骼肌收缩蛋白SDS-PAGE后,运动训练组电泳图谱上出现大量新的条带,分子量范围为43-200 kDa。结论:本运动模型下,在骨骼肌收缩蛋白SDS-PAGE后,运动训练组图谱上出现大量新的蛋白条带,这些新的条带是肌肉蛋白质的降解产物,还是为了修复运动损伤而合成的新的蛋白质片段,还有待后续研究。  相似文献   

10.
The motor protein myosin-I produces its working stroke in two steps   总被引:13,自引:0,他引:13  
Many types of cellular motility, including muscle contraction, are driven by the cyclical interaction of the motor protein myosin with actin filaments, coupled to the breakdown of ATP. It is thought that myosin binds to actin and then produces force and movement as it 'tilts' or 'rocks' into one or more subsequent, stable conformations. Here we use an optical-tweezers transducer to measure the mechanical transitions made by a single myosin head while it is attached to actin. We find that two members of the myosin-I family, rat liver myosin-I of relative molecular mass 130,000 (M(r) 130K) and chick intestinal brush-border myosin-I, produce movement in two distinct steps. The initial movement (of roughly 6 nanometres) is produced within 10 milliseconds of actomyosin binding, and the second step (of roughly 5.5 nanometres) occurs after a variable time delay. The duration of the period following the second step is also variable and depends on the concentration of ATP. At the highest time resolution possible (about 1 millisecond), we cannot detect this second step when studying the single-headed subfragment-1 of fast skeletal muscle myosin II. The slower kinetics of myosin-I have allowed us to observe the separate mechanical states that contribute to its working stroke.  相似文献   

11.
Fast and slow myosin in developing muscle fibres.   总被引:2,自引:0,他引:2  
G F Gauthier  S Lowey  A W Hobbs 《Nature》1978,274(5666):25-29
Slow and fast isoenzymes of myosin coexist in all the fibres of a fast-twitch mammalian muscle during early development. They later become segregated into different populations of fibres. Slow myosin is most abundant when the speed of contraction of the muscle is slow and the fibres are multiply innervated; its synthesis in the majority of the fibres seems to be 'switched off' when the speed of contraction increases and the fibres become innervated by single motoneurones.  相似文献   

12.
Calcium regulation of molluscan myosin ATPase in the absence of actin   总被引:1,自引:0,他引:1  
C Wells  C R Bagshaw 《Nature》1985,313(6004):696-697
In the myosin-linked regulatory mechanism typified by the molluscan scallop adductor muscle, contraction is controlled by Ca2+ binding to sites on the thick filament protein, myosin. The regulatory light chains of myosin heads are involved directly in this mechanism and early studies suggested that, in the absence of Ca2+, these subunits prevent the interaction of a myosin-adenosine nucleotide complex with the actin-containing thin filament. Subsequently, Ashiba et al. reported that the steady-state ATPase of molluscan myosin exhibits a limited degree of Ca2+ activation in the absence of actin. Recently, however, we have shown that steady-state ATPase activity in relaxing conditions is dominated by the unregulated molecules in the myosin preparation. Single-turnover kinetic methods are required to monitor the highly suppressed ATPase activity of the regulated population. Using the latter approach, we report here that scallop myosin ATPase is reduced about 100-fold on removal of Ca2+. The regulatory light chains maintain the relaxed state via conformational changes which suppress the product release steps, irrespective of the presence of actin.  相似文献   

13.
M Tokunaga  K Sutoh  C Toyoshima  T Wakabayashi 《Nature》1987,329(6140):635-638
Both ATP hydrolysis by myosin and the accompanying cyclic association-dissociation of actin and myosin are essential for muscle contraction. It is important for understanding the molecular mechanism of contraction to know the three-dimensional locations of the two major functional sites of myosin: the ATPase site and the actin-binding site. We have determined the position of the ATPase site of myosin using three-dimensional image reconstruction from electron micrographs and site-specific labelling with the avidin-biotin system. The ATPase site is about 5 nm from the tip of the myosin head and is about 4 nm away from the actin-binding site of myosin. This is the first report of the three-dimensional location of an enzyme active site by electron microscopy.  相似文献   

14.
K Trombitás  A Tigyi-Sebes 《Nature》1984,309(5964):168-170
An unresolved problem in understanding muscular contraction is why the internal resistance to sarcomere shortening increases progressively during contraction. We have addressed this problem here by investigating the movement of detached acting filaments in the sarcomeres of insect flight muscle. The final position of the detached actin filaments shows that they were able to slide freely into regions where they have the wrong polarity to interact actively with myosin (double-overlap zones) but where they prevent the exertion of force by cross-bridges between myosin and the correctly polarized acting filaments. These observations indicate that the isometric tension at all sarcomere lengths is directly proportional to the number of cross-bridges in the region of single-overlap of correctly polarized actin and myosin filaments. The decrease in tension as sarcomeres shorten is thus the result of the decrease in the number of effective cross-bridges as actin filaments slide into regions where they are of the wrong polarity to form cross-bridges, and where they inhibit the existing cross-bridges.  相似文献   

15.
Myosin subfragment-1 is sufficient to move actin filaments in vitro   总被引:3,自引:0,他引:3  
The rotating crossbridge model for muscle contraction proposes that force is produced by a change in angle of the crossbridge between the overlapping thick and thin filaments. Myosin, the major component of the thick filament, is comprised of two heavy chains and two pairs of light chains. Together they form two globular heads, which give rise to the crossbridge in muscle, and a coiled-coil rod, which forms the shaft of the thick filament. The isolated head fragment, subfragment-1 (S1), contains the ATPase and actin-binding activities of myosin (Fig. 1). Although S1 seems to have the requisite enzymatic activity, direct evidence that S1 is sufficient to drive actin movement has been lacking. It has long been recognized that in vitro movement assays are an important approach for identifying the elements in muscle responsible for force generation. Hynes et al. showed that beads coated with heavy meromyosin (HMM), a soluble proteolytic fragment of myosin consisting of a part of the rod and the two heads, can move on Nitella actin filaments. Using the myosin-coated surface assay of Kron and Spudich, Harada et al. showed that single-headed myosin filaments bound to glass support movement of actin at nearly the same speed as intact myosin filaments. These studies show that the terminal portion of the rod and the two-headed nature of myosin are not required for movement. To restrict the region responsible for movement further, we have modified the myosin-coated surface assay by replacing the glass surface with a nitrocellulose film. Here we report that myosin filaments, soluble myosin, HMM or S1, when bound to a nitrocellulose film, support actin sliding movement (Fig. 2). That S1 is sufficient to cause sliding movement of actin filaments in vitro gives strong support to models of contraction that place the site of active movement in muscle within the myosin head.  相似文献   

16.
Sliding movement of single actin filaments on one-headed myosin filaments   总被引:1,自引:0,他引:1  
Y Harada  A Noguchi  A Kishino  T Yanagida 《Nature》1987,326(6115):805-808
The myosin molecule consists of two heads, each of which contains an enzymatic active site and an actin-binding site. The fundamental problem of whether the two heads function independently or cooperatively during muscle contraction has been studied by methods using an actomyosin thread, superprecipitation and chemical modification of muscle fibres. No clear conclusion has yet been reached. We have approached this question using an assay system in which sliding movements of fluorescently labelled single actin filaments along myosin filaments can be observed directly. Here, we report direct measurement of the sliding of single actin filaments along one-headed myosin filaments in which the density of heads was varied over a wide range. Our results show that cooperative interaction between the two heads of myosin is not essential for inducing the sliding movement of actin filaments.  相似文献   

17.
Mechanism of force generation by myosin heads in skeletal muscle   总被引:1,自引:0,他引:1  
Muscles generate force and shortening in a cyclical interaction between the myosin head domains projecting from the myosin filaments and the adjacent actin filaments. Although many features of the dynamic performance of muscle are determined by the rates of attachment and detachment of myosin and actin, the primary event in force generation is thought to be a conformational change or 'working stroke' in the actin-bound myosin head. According to this hypothesis, the working stroke is much faster than attachment or detachment, but can be observed directly in the rapid force transients that follow step displacement of the filaments. Although many studies of the mechanism of muscle contraction have been based on this hypothesis, the alternative view-that the fast force transients are caused by fast components of attachment and detachment--has not been excluded definitively. Here we show that measurements of the axial motions of the myosin heads at ?ngstr?m resolution by a new X-ray interference technique rule out the rapid attachment/detachment hypothesis, and provide compelling support for the working stroke model of force generation.  相似文献   

18.
T Yanagida  T Arata  F Oosawa 《Nature》1985,316(6026):366-369
Muscle contraction results from a sliding movement of actin filaments induced by myosin crossbridges on hydrolysis of ATP, and many non-muscle cells are thought to move using a similar mechanism. The molecular mechanism of muscle contraction, however, is not completely understood. One of the major problems is the mechanochemical coupling at high velocity under near-zero load. Here, we report measurements of the sliding distance of an actin filament induced by a myosin crossbridge during one ATP hydrolysis cycle in an unloaded condition. We used single sarcomeres from which the Z-lines, structures which anchor the thin filaments in the sarcomere, had been completely removed by calcium-activated neutral protease (CANP) and trypsin, and measured both the sliding velocity of single actin filaments along myosin filaments and the ATPase activity during sliding. Our results show that the average sliding distance of the actin filament is less than or equal to 600 A during one ATP cycle, much longer than the length of power stroke of myosin crossbridges deduced from mechanical studies of muscle, which is of the order of 80 A (for example, ref. 15).  相似文献   

19.
The Caenorhabditis elegans gene unc-22 encodes a very large muscle protein, called twitchin, which consists of a protein kinase domain and several copies of two short motifs. The sequence of twitchin has unexpected similarities to the sequences of proteins of the immunoglobulin superfamily, cell adhesion molecules and vertebrate muscle proteins, including myosin light-chain kinase. These homologies, together with results from earlier genetic and molecular analyses, indicate that twitchin is involved in a novel mechanism of myosin regulation.  相似文献   

20.
Low Ca2+ impedes cross-bridge detachment in chemically skinned Taenia coli   总被引:3,自引:0,他引:3  
K Güth  J Junge 《Nature》1982,300(5894):775-776
Muscle force is generated by cycling cross-bridges between actin and myosin filaments. In smooth muscle, cyclic attachment and detachment of cross-bridges is thought to be induced by a Ca2+- and calmodulin-dependent myosin light chain kinase which phosphorylates myosin. The relaxation that occurs after Ca2+ removal is usually ascribed to dephosphorylation of myosin by a phosphatase as non-phosphorylated myosin is unable to form force-generating criss-bridges. Recently, Dillon et al. claimed, however, that dephosphorylation of attached cross-bridges may impede cross-bridge detachment, thus forming so-called 'latch bridges'. Here we present evidence that after a Ca2+- and calmodulin-induced contraction of chemically skinned guinea pig Taenia coli, the rapid removal of Ca2+ impedes the detachment of the myosin cross-bridges from the actin filament; force can then be maintained without energy consumption. The extremely slowly detaching cross-bridges which maintain the force after Ca2+ removal may indeed correspond to the 'latch bridges' mentioned above.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号