首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Non-coding RNA (ncRNA) has been shown to regulate diverse cellular processes and functions through controlling gene expression. Long non-coding RNAs (lncRNAs) act as a competing endogenous RNAs (ceRNAs) where microRNAs (miRNAs) and lncRNAs regulate each other through their biding sites. Interactions of miRNAs and lncRNAs have been reported to trigger decay of the targeted lncRNAs and have important roles in target gene regulation. These interactions form complicated and intertwined networks. Certain lncRNAs encode miRNAs and small nucleolar RNAs (snoRNAs), and may regulate expression of these small RNAs as precursors. SnoRNAs have also been reported to be precursors for PIWI-interacting RNAs (piRNAs) and thus may regulate the piRNAs as a precursor. These miRNAs and piRNAs target messenger RNAs (mRNAs) and regulate gene expression. In this review, we will present and discuss these interactions, cross-talk, and co-regulation of ncRNAs and gene regulation due to these interactions.  相似文献   

2.
3.
The receptor (CXCR4) for the stromal-derived factor-1 (SDF1) and the urokinase-receptor (uPAR) are up-regulated in various tumors. We show that CXCR4-transfected cells migrate toward SDF1 on collagen (CG) and do not on vitronectin (VN). Co-expression of cell-surface uPAR, which is a VN receptor, impairs SDF1-induced migration on CG and allows migration on VN. Blocking fMLP receptors (fMLP-R), alpha-v integrins or the uPAR region capable to interact with fMLP-Rs, impairs migration of uPAR/CXCR4-transfected cells on VN and restores their migration on CG. uPAR co-expression also reduces the adherence of CXCR4-expressing cells to various components of the extracellular matrix (ECM) and influences the partitioning of beta1 and alpha-v integrins to membrane lipid-rafts, affecting ECM-dependent signaling. uPAR interference in CXCR4 activity has been confirmed in cells from prostate carcinoma. Our results demonstrate that uPAR expression regulates the adhesive and migratory ability of CXCR4-expressing cells through a mechanism involving fMLP receptors and alpha-v integrins.  相似文献   

4.
5.
6.
Zusammenfassung Es wurde gefunden, dass 3-Methyl-Glukose (MEG) sich in 85% der gesamten Gewebeflüssigkeit der Rattenleber löst. Ist Glukose in gleicher Plasmamenge enthalten, so ist die berechnete Konzentration in der Leberzellflüssigkeit doppelt so hoch. Bei Insulinhypoglykämie stieg dieses Verhältnis weiter an, ohne aber eine Veränderung im Verteilungsvolumen von MEG zu ergeben. Die Leberzellmembran scheint die Penetration der Glukose aus der Zelle zu verzögern.

The financial support of The Medical Research Council of Canada and the Banting Foundations as well as the skilled technical help of Mrs.S. Waterfield is gratefully acknowledged.  相似文献   

7.
8.
Methylation of lysine residues of histones is associated with functionally distinct regions of chromatin, and, therefore, is an important epigenetic mark. Over the past few years, several enzymes that catalyze this covalent modification on different lysine residues of histones have been discovered. Intriguingly, histone lysine methylation has also been shown to be cross-regulated by histone ubiquitination or the enzymes that catalyze this modification. These covalent modifications and their cross-talks play important roles in regulation of gene expression, heterochromatin formation, genome stability, and cancer. Thus, there has been a very rapid progress within past several years towards elucidating the molecular basis of histone lysine methylation and ubiquitination, and their aberrations in human diseases. Here, we discuss these covalent modifications with their cross-regulation and roles in controlling gene expression and stability. Received 24 September 2008; received after revision 21 November 2008; accepted 28 November 2008  相似文献   

9.
10.
11.
The insulin signaling pathway regulates whole-body glucose homeostasis by transducing extracellular signals from the insulin receptor (IR) to downstream intracellular targets, thus coordinating a multitude of biological functions. Dysregulation of IR or its signal transduction is associated with insulin resistance, which may culminate in type 2 diabetes. Following initial stimulation of IR, insulin signaling diverges into different pathways, activating multiple substrates that have roles in various metabolic and cellular processes. The integration of multiple pathways arising from IR activation continues to expand as new IR substrates are identified and characterized. Accordingly, our review will focus on roles for IR substrates as they pertain to three primary areas: metabolism/glucose uptake, mitogenesis/growth, and aging/longevity. While IR functions in a seemingly pleiotropic manner in many cell types, through these three main roles in fat and skeletal muscle cells, IR multi-tasks to regulate whole-body glucose homeostasis to impact healthspan and lifespan.  相似文献   

12.
13.
Heparanase involvement in physiology and disease   总被引:2,自引:0,他引:2  
Heparanase is an endoglycosidase that degrades heparan sulfate on the cell surface and extracellular matrix. The physiological functions of heparanase include heparan sulfate turnover, embryo development, hair growth, and wound healing. Heparanase is implicated in a variety of pathologies, such as tumor growth, angiogenesis, metastasis, inflammation, and glomerular diseases. Heparanase overexpression in a variety of malignant tumors suggests that it could be a target for anti-cancer therapy.  相似文献   

14.
We investigated the effect of aging on glucose uptake, glucose-induced O2 consumption, glucose-induced45Ca movements, and calmodulin content to elucidate age-related impairment of glucose-induced insulin release in pancreatic islets of Wistar rats. Intact pancreatic islets from old (24-month-old) rats showed impaired glucose-induced insulin release; glucose uptake and O2 consumption were lower in old than in young (2-month-old) or adult (12-month-old) rats. Moreover,45Ca uptake and calmodulin content were decreased in pancreatic islets from older rats, which explained the impairment in glucose-induced insulin release in aging. No major differences between the 3 age groups in glucose-induced45Ca efflux in pancreatic islets were observed.  相似文献   

15.
16.
Summary Incubation of rat islets with phenylalanine increased the tissue content of phosophoenolpyruvate, both in the presence and in the absence of glucose. At the same time, L-phenylalanine neither stimulated nor inhibited insulin release. It is unlikely that insulin secretion is tightly coupled to the availability of phosphoenolpyruvate in rat islets.  相似文献   

17.
Over the past 20 years, laboratory studies of genetically defined animal models of human essential hypertension have provided valuable information on the pathophysiology of this disturbance in cardiovascular regulation. Relatively fewer studies have examined the impact of preweaning factors on the developing cardiovascular system of hypertensive animals. In our laboratory studies, we have utilized two inbred genetically hypertensive models: the spontaneously hypertensive (SHR) rat and its Wistar/Kyoto (WKY) normotensive control strain as well as the Dahl hypertension-sensitive (SS/Jr) and hypertension-resistant (SR/Jr) strains. To manipulate the preweaning maternal environment, we have employed the technique of reciprocal cross-fostering of litters between hypertensive and matched normotensive mothers. Our findings to date point to the maternal environment as a powerful influence on the development of high blood pressure in genetically hypertensive rats. In general, hypertensive rats reared by normotensive foster mothers have significant reductions in arterial blood pressure in adulthood. Thus, the progression of hypertinsive disease is not strictly predtermined by genotypic factors. Rather, a genetic predisposition to hypertension interacts with preweaning environmental factors to determine an animal's cardiovascular phenotype in adulthood.  相似文献   

18.
Ethanol inhibits insulin expression and actions in the developing brain   总被引:4,自引:0,他引:4  
Ethanol-induced cerebellar hypoplasia is associated with inhibition of insulin-stimulated survival signaling. The present work explores the mechanisms of impaired insulin signaling in a rat model of fetal alcohol syndrome. Real-time quantitative RT-PCR demonstrated reduced expression of the insulin gene in cerebella of ethanol-exposed pups. Although receptor expression was unaffected, insulin and insulin-like growth factor (IGF-I) receptor tyrosine kinase (RTK) activities were reduced by ethanol exposure, and these abnormalities were associated with increased PTP1b activity. In addition, glucose transporter molecule expression and steady-state levels of ATP were reduced in ethanol-exposed cerebellar tissue. Cultured cerebellar granule neurons from ethanol-exposed pups had reduced expression of genes encoding insulin, IGF-II, and the IGF-I and IGF-II receptors, and impaired insulin- and IGF-I-stimulated glucose uptake and ATP production. The results demonstrate that ethanol inhibits insulin-mediated actions in the developing brain by reducing local insulin production and insulin RTK activation, leading to inhibition of glucose transport and ATP production.Received 30 December 2004; received after revision 1 March 2005; accepted 10 March 2005  相似文献   

19.
20.
For better comprehension of the metabolic syndrome, it is necessary to differentiate the effect of insulin on glucose metabolism on the one hand, and on other metabolic activities on the other hand. Whereas glucose utilization is affected by insulin resistance, the effect of insulin on lipid metabolism, ion and aminoacid transport does not seem to be diminished. Lipid metabolism, however, seems to play a crucial role in the induction of the vicious cycle. Increased energy and fat ingestion may be due to an increased number of galanin secreting cells in the hypothalamus. The excessive fat intake results in an increased rate of release of insulin and increased influx of triglycerides into the blood. From these triglycerides an excess of free fatty acids is released by the action of lipoprotein lipase. The increased plasma free fatty acid level then results in insulin resistance affecting glucose metabolism. Also, these free fatty acids may impair the secretion of insulin. Induction of insulin resistance results in higher glucose levels, which may cause hyperinsulinemia. Hyperinsulinemia maintains the elevation of triglycerides. When diabetes becomes overt and elevated glucose levels prevail, the hyperinsulinism acts on the metabolic pathways which are still sensitive to insulin, namely lipid metabolism, aminoacid transport and ion transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号