首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以深海多金属硫化物破碎过程中的能量为研究内容,综合分析该矿物破碎过程中的能量分布情况,提出多金属硫化物破碎过程中能量的计算方法,在不同围压条件下对该矿物试件进行单/三轴破碎实验,得到其应力-应变曲线和单/三轴压缩条件下的总输入能、弹性能和耗散能与应变之间的关系曲线,并对曲线和破碎过程中的能量转化情况进行分析。研究结果表明:得到深海多金属硫化物破碎块的数目等与能量之间的关系;获得多金属硫化物破碎过程中弹性能、耗散能和总输入能的变化曲线以及峰值弹性能与围压之间的关系。  相似文献   

2.
炸药破碎岩石能量利用率的研究   总被引:1,自引:0,他引:1  
以爆炸动力学理论和岩石断裂理论为基础,分析了岩石破中的能量平衡问题,并给出了炸药破碎岩石能量利用率的计算方法。理论分析表明,平均爆破块度随岩石的单位表面能的增加而增加;计算结果表明,炸药破碎岩石能量利用率仅占炸药总能量的百分之十左右。  相似文献   

3.
以爆炸动力学理论和岩石断裂理论为基础,分析了岩石爆破中的能量平衡问题,并给出了炸药破碎岩石能量利用率的计算方法,理论分析表明,平均爆破块度随岩石的单位表面能的增加而增加,计算结果表明,炸药破碎岩石能量利用率仅占炸药总能量的百分之十左右.  相似文献   

4.
电钻是利用旋转式钻眼方法的采掘工具。电钻的钻头紧压在岩石上使岩石局部破碎,钻头乃得钻入岩石内;再利用钻头的不断旋转,其前刃面对岩石作用-破碎力,使岩石沿着易于破碎的方向破碎—即沿破碎角表面剪破碎。因此,这一破碎力其沿破碎角方向的分力应大于岩石的临界抗剪强度。所以说:电钻是利用钻头的旋转力矩,来剪切掉钻头周围岩石。 电钻的能量消耗有以下几方面 1.剪切掉钻头周围岩石所消耗的能量; 2.克服钻头顶端和岩石之间产生的摩擦阻力矩而消耗的能量;  相似文献   

5.
为研究含孔隙水压下岩石承载变形过程中的能量演化特征,基于有效应力原理推导出含孔隙水压下岩石承载变形过程中的能量计算公式.分析了围压和孔隙水压对岩石承载变形过程中能耗特征的影响,讨论了岩石输入能密度、弹性能密度和耗散能密度在扩容起始点和峰值点的差异,从能量耗散的角度解释了岩石扩容起始应力作为岩石长期强度参数的合理性.研究表明:岩样在扩容起始点和峰值点的输入能密度和弹性能密度与围压呈正线性关系,与孔隙水压呈负线性关系.岩样承载过程中的cd-c阶段的耗散能密度随围压的增大而增大,而孔隙水压的增大则导致该阶段耗散能密度的减小,其有效地弱化了岩石材料内部颗粒间的摩擦效应.此外,孔隙水压能量输入密度随岩样的体积应变变化,在高孔隙水压条件下,相同应力水平的各类能量输入密度的绝对值随孔隙水压的增大而增大.  相似文献   

6.
PDC切削齿破岩效率数值模拟研究   总被引:1,自引:0,他引:1  
PDC钻头是油田钻井的主要破岩工具,合理布齿设计是提高其性能的主要手段.基于弹塑性力学和岩石力学,以Drucker-Prager准则作为岩石的本构关系,建立了PDC切削齿动态破岩的三维仿真模型,分析了后倾角、侧倾角、切削深度、围压等因素对破岩能效的影响.结果表明,随侧倾角增大,破碎比功逐渐增大,小于25°时,破碎比功增加量很小,大于25°时,破碎比功大幅增加;随后倾角增大,破岩比功增大,其变化率基本不受切削深度和围压的影响;切削深度过大或过小,破碎比功均较大,切深存在最优值;随围压的增大,破碎比功增大,在较低围压范围内,破碎比功增加量最为显著.研究结果有助于深化对PDC切削齿破岩的认识,为PDC钻头的设计和定制钻进措施提供重要参考.  相似文献   

7.
基于微钻岩石可钻性试验与岩石强度刻划试验破岩机制一致性,通过开展试验获得两种试验岩石破碎比功的转化关系,结合岩石PDC钻头可钻性级值求取方法,建立利用刻划岩石破碎比功求取岩石PDC钻头可钻性级值模型,形成一种通过刻划岩心表面得到岩石PDC钻头可钻性级值剖面的方法。结果表明,该方法不但与微钻可钻性试验结果具有很好的一致性,还充分表征了矿物组分、胶结强度、微观结构等复杂因素变化对岩石PDC钻头可钻性级值的影响,且不破坏岩心的整体结构,提高了岩心的利用率,推广应用价值高。  相似文献   

8.
热力射流破岩技术是指利用高温介质诸如超临界水对岩石进行快速局部加热达到破碎岩石的目的。由于岩石基质热导率很低,因此会在岩石表面形成温度应力。当温度应力超过岩石的强度,会在岩石内部形成微裂缝,且裂缝不断扩展最终使得岩石表面发生热裂解,热裂解作用导致岩石表面从本体脱落从而使得岩石破碎。基于热-固耦合理论建立了热裂解钻井模型,利用Crank-Nicolson差分方法求解得到了热裂解过程中井底岩石温度场和温度应力的分布规律。结果表明,在热裂解钻井过程中,岩石受热部分温度迅速升高,在径向和轴向方向上产生温度梯度;受热部分体积膨胀在径向方向上受到压应力作用,在轴向方向上发生屈曲,受到剪应力作用。研究成果对热裂解钻井的现场应用具有十分重要的指导意义。  相似文献   

9.
为了分析实钻过程中钻头破碎岩石能量,将钻进参数、水力参数、岩屑粒度与破碎能耗结合起来建立实钻条件下岩石破碎能耗的分形模型,并应用该模型对大庆徐家围子火山岩地层徐深31井的岩石破碎能耗进行计算分析.结果表明:该模型既能用来计算和评价实钻过程中井底岩石的抗破碎能力,又可作为优选钻进参数和钻头选型的依据;岩石破碎能耗参数与传统静态的岩石可钻性参数有本质区别,岩石破碎能耗参数既与地层内岩石的自身属性有关,又与钻井的破岩条件和钻进措施有关,反映的是实际钻井条件下的岩石抗破碎能力;过平衡钻进的压井工艺能大幅度限制实际钻速;深部地层岩石的较高硬度和可钻性级值均能降低钻速,但降低幅度不大,真正大幅降低钻速的是井底压力环境.  相似文献   

10.
为了研究应力波加载速率对岩石破碎与能量利用效率的影响,利用杆件纵向撞击面局部变形的非线性模型设计了5种不同曲率半径的锤头,获得了非等入射能与等入射能条件下不同加载速率的入射应力波,并对红砂岩进行了冲击试验.结果表明:随着应力波加载速率的增大,砂岩试样破碎块度的分形维数呈近似线性增长关系.在加载速率相同的情况下,砂岩试样破碎块度的分形维数随入射能的增大而增大.随着入射应力波加载速率的增加,破碎能耗密度增大.在加载速率相同的情况下,入射能越大岩石破碎能耗密度越大.在非等入射能条件下,岩石破碎过程中的能量利用率随着入射能的增大呈明显的下降趋势.实际生产中最优的应力波形必须综合考虑破岩效果和能量利用率等因素.  相似文献   

11.
为了研究岩体的变形特征和能量特征与其所处应力状态之间的关系,开展了5种围压下花岗岩的三轴循环加卸载试验.基于应力-应变曲线,计算了循环加卸载过程中花岗岩的弹性模量和能量密度,分析了应力状态对弹性模量及能量演化规律的影响.研究结果表明:轴向弹性模量随围压的增大而增大,随轴向应力的增大先增大后减小.轴向弹性模量与最大、最小主应力呈现良好的二次函数关系.随着围压的增大,能量密度与弹性能占比(弹性能与输入总能量之比)均显著增大,岩石储能能力提高;随着轴向应力增大,弹性能占比先增大后减小.弹性能占比减小阶段即岩石损伤加剧阶段,围压的增加延长了岩石的损伤演化过程.最后讨论了应力状态、岩石力学参数及能量状态的关联性.  相似文献   

12.
水位升降对露天矿坑边坡岩石强度产生明显的弱化,因此,干湿循环对岩质边坡稳定性分析具有重要影响。通过不同干湿循环次数下的岩石单轴压缩试验,基于不可逆热力学损伤理论,分析外力总功、弹性能以及能量耗散之间的内在关系。实验表明:外部载荷对岩石所做总功,一部分转化为岩石弹性变形能,还有一部分以能量耗散的形式导致岩石发生不可逆的损伤。通过岩石室内试验,研究花岗岩力学性质变化规律,建立基于能量耗散原理的不同循环次数下花岗岩损伤演化方程。室内试验分析和理论研究表明,基于能量耗散原理建立的不同干湿循环效应下岩石损伤演化方程,可以较好地描述岩石的损伤演化。  相似文献   

13.
基于钻进过程监测系统在充填土-风化花岗岩地层中对液压旋转钻进的监测数据,对金刚石钻进系统的能量进行了分析.结果表明,钻进系统的能量分布与在普通风化花岗岩地层中的结果一致,黏滞能、动能以及钻进总能量与岩石的风化程度呈负相关,轴力功与岩石的风化程度呈正相关,说明金刚石钻进能量与岩石风化程度具有很好的响应关系.动能、轴力功及黏滞能受钻进方式影响,用于地层识别将受严格的可比条件限制.金刚石钻进比功随岩石风化程度的增强而减少,在不同风化程度的岩层中具有很好的分区性.而且,在充填土及全风化、强风化花岗岩地层中,金刚石旋转钻进比功值明显低于冲击凿碎比功,在微风化的坚硬岩中,旋转钻进比功则明显高于冲击凿碎比功.  相似文献   

14.
高压水射流破碎高围压岩石损伤场的数值模拟   总被引:2,自引:0,他引:2  
利用ALE(arbitrary lagrange-euler)算法,考虑到一般情况下岩石处于高围压状态,建立了高压水射流冲击高围压岩石的数值模型.分析了高压水射流冲击下高围压岩石的损伤演化过程,指出岩石破碎过程呈阶跃式;通过对比无围压状态下岩石和高围压状态下岩石在高压水射流作用下破碎坑演化情况,指出处于高围压状态下的岩石损伤沿轴向的演化速率明显低于无围压状态下的岩石,沿径向的损伤演化受围压影响较小.通过分析4个典型单元在不同速度射流冲击下损伤演化情况,表明在提高射流速度可明显提高射流破岩效率,并在理论上对射流速度与射流破岩性能的关系进行了解释.  相似文献   

15.
根据矿石碎磨过程中能量输入和消耗的一般规律,以破碎比和磨矿比为自变量,能耗为因变量,经过条件假设,推导出矿石破碎和磨细所需要的能耗与破碎比和磨矿比之间的统一数学模型。研究结果表明:矿石碎磨能耗与破碎比和磨矿比的n次方成正比,对于破碎和磨矿阶段,对应的指数n分别为1和1/2;破碎和磨矿的能耗系数与矿石极限应力、弹性模数、密度、比表面能等力学性质有关;通过碎矿设备生产能力计算的经验公式和邦德功指数经验公式证明了所推导的数学模型的正确性;基于该模型和碎磨能耗最低原理,获得碎磨能耗最低时矿石最佳入磨粒度计算公式。  相似文献   

16.
 岩石的细观结构影响其受载过程中的能量行为。从岩石基元平均强度、均质度和细观特征尺度等3种细观特征入手,研究了其对特征能量参数和能量特征指数的影响规律。结果表明:(1)基元平均强度越大,相同应力比下的输入能量密度和积聚弹性能密度呈非线性增长;峰后所需耗散能密度变化不大,约为500~2000J/m3;弹性能转化率变小;岩样能量特征指数呈指数型增长。(2)随着均质度的升高,峰前输入能量密度和积聚弹性能密度都呈线性增长;峰后破坏所需耗散能降低;越来越多的能量转化为弹性能积聚在岩石内;能量特征指数线性增大。(3)细观特征尺度越大,外界输入能量和积聚弹性能都增大,但幅度不同;峰后破坏所需耗散能越大;弹性能转化比例越低;当细观特征尺度小于1mm时,能量特征指数大幅减小,而当其大于1mm时,变化不大。  相似文献   

17.
结合岩石的不同破坏方式,如剪切破坏、张拉破坏、挤压破坏及多种破坏方式混合作用等,探讨了岩石破碎体积的计算方法.根据在滚刀作用下岩石以剪切破坏和张拉破坏为主的特性,提出以岩石破坏时裂纹长度、剪切面在岩石自由表面投影长度及滚刀刀刃宽度间的关系来识别岩石破坏方式,计算岩石破碎体积.利用CSM模型计算破岩比能,评估滚刀破岩效率.并通过实例对该方法进行了计算验证,结果表明该方法能够为TBM的性能预测和优化提供一定参考.  相似文献   

18.
基于能量耗散原理的红砂岩崩解机制研究   总被引:1,自引:0,他引:1  
为了研究红砂岩的崩解机制,寻找阻滞其崩解的方法,通过分析红砂岩崩解过程中传递的不同能量类型及其定量计算方法,基于能量耗散原理建立红砂岩崩解的能量耗散模型。结合工程实例,运用该模型分析红砂岩在崩解过程中的能量变化规律。研究结果表明:在岩石自然环境中的崩解过程中,随着岩石粒径变小,其新增表面积越来越大,其新增表面能随时间呈线性增大,但是,在这个过程中,岩石对吸收能量的利用率下降,说明红砂岩在不同崩解阶段对吸收热量的利用率不同;红砂岩崩解能量利用率随崩解呈指数衰减。建议工程上在治理红砂岩问题时可采用预先崩解的方法,然后采用压实破碎,包边封闭的方法尽量减小红砂岩与外界环境接触的面积,切断软岩崩解所需的能量来源,以延迟其崩解。  相似文献   

19.
为了研究钻探设备在岩石掘进过程中的效率问题,通过综述与实验相结合的方法,阐述了钻探设备的发展过程,揭示了岩石破碎的机械原理和钻探过程的能容量由钻井掌子面承载比重的大小决定.在一定破碎条件下,保障仪器的参数及能量是提高钻探效率的目标.并通过实验证明了破碎过程能容量与单位掘进能的依赖关系和无因次准数与用于花岗石钻具单位掘进能的依赖关系.分析表明:建立新的掘进技术是研究无汽阀杆掘进.旋转装置的作用;掘进钻探碎石仪应该保证最小的岩石能容量的破碎;在设计碎石仪时必须考虑到出现摆动型波浪能量条件;在岩石一定破碎条件及定位销碎石仪有足够强度情况下,浸入式气动气锤保证将钻探速度提高50%.  相似文献   

20.
利用界面张力、乳化性能、润湿和驱油效率等测试手段研究槐糖脂、鼠李糖脂和脂肽3种类型生物表面活性剂的驱油性能.结果表明:生物表面活性剂油水界面张力为10-1 mN/m数量级,润湿指数为0.36,由于鼠李糖脂和脂肽同时具有较强的降界面张力和润湿反转性能,能大幅降低原油从岩石表面剥离的黏附功(黏附功下降幅度超过99.5%),...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号